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Introduction

The research described in this report is primarily directed
at measuring and predicting the dynamic response properties of
offshore structures. This report covers the most recent year in
a project which has spanned five years of effort. 1In the recent
year, the research has focussed on the dynamic response of
offshore platforms to wave excitation and on the vibration
responses of long flexible cylinders, such as cables and marine
risers, to vortex shedding.

The format of this report is a sequence of professional
papers which have been published or presented in the last year.
To aid the reader in assessing the content of these papers, an
abstract of each paper is presented immediately following the
Acknowledgements section.

Acknowledgements

The author wishes to thank Mr. John Gregory, the U.S.G.S.
program manager for his thoughtfulness and support over the
several yvears of this research program. This program has
supported many graduate students in Ocean Engineering at M.I.T.
The U.S.G.S. Branch of Marine 0il and Gas Operations and more
recently the Minerals Management Service research program for
activities on the Quter Continental Shelf is one of the few
sources in this country of university research support in ocean
engineering. This program has made a substantial and
identifiable impact on the preparation and training of engineers
going to industry. Without such support, the future supply of
adequately prepared ocean engineers is in Jjeopardy.

The SENSITIVITY OF FATIGUE LIFE ESTIMATES
TO VARIATIONS IN STRUCTURAL NATURAL PERIODS,
MODAL DAMPING RATIOS, AND DIRECTIONAL SPREADING OF THE SEAS

by Prof. J. Kim Vandiver

Abstract

Structures with natural periods in the range of four to ten
seconds will be susceptible to hi cycle-low stress fatigue damage
due to resonant structural response in commonly occurring sea
conditions. It is shown that the computed fatigue life of a
structure is extremely sensitive to the designer's estimate of
the natural period - varying by as much as the natural period
raised to the minus eighteenth power. A 10% error in the
estimated natural period may result in a factor of six error in
computed fatigue life. Damping ratio estimates are very prone to
error. Fatigue life is shown to vary as approximately the square
of the estimated damping ratio.



A MATHEMATICAL BASIS FOR THE RANDOM DECREMENT VIBRATICN
SIGNATURE ANALYSIS TECHNIQUE

by Prof. J. Kim Vandiver, A.B. Dunwoody, R.B, Campbell,
and M.F. Cook, MIT

The mathematical basis for the Random Decrement Technique
of vibration signature analysis is established. The general
relationship between the autocorrelation function of a random
process and the Randomdec signature is derived. For the
particular case of a linear time invariant system excited by a
zero-mean, stationary, Gaussian random process, a Randomdec
signature of the output is shown to be proportional to the
autocorrelation of the output. Example Randomdec signatures

are computed from acceleration response time histories from an
offshore platform.

This paper was published in the Journal of Mechanical
Design, 1982.






THE SENSITIVITY OF FATIGUE LIFE ESTIMATES
TO VARIATIONS IN STRUCTURAL NATURAL PERIODS,
MODAL DAMPING RATIOS, AND DIRECTIONAL SPREADING
OF THE SEAS

by J. Kim Vandiver
Associate Professor of Ocean Engineering
Massachusetts Institute of Technology
Cambridge, Massachusetts

SUMMARY

Structures with natural periods in the range of four to ten seconds will be susceptible to
ni cycle-low stress fatigue damage due to resonant structural response in commonly occurring sea
conditions. It is shown that the computed fatigue life of a structure is extremely sensitive to
the designer's estimate of the natural period - varying by as much as the natural period raised to
the minus eighteenth power. A 10% error in the estimated natural period may result in a factor of
six error in computed fatigue life. Damping ratio estimates are very prone to error. Fatigue
life is shown to vary as approximately the square of the estimated damping ratio.

It is known that directional spreading of wave energy has a mitigating effect on fatigue
damage. This is quantified in a parameter variation study. A new wave spreading model is pro-
posed that as a result of informal communication is already being adopted by oceanographers for
the description of cbserved sea states.
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NOMENCLATURE

constant of proporticnality
constants of the SN fatigue life curve
factor which accounts for spreading of waves

spreading function

Young's modulus

eccentricity

rate of fatigue damage accumulation
acceleration of gravity

stress transfer function

modal stiffness

modal mass

number of cycles
radiation damping

total damping

Krogstad upper bound wave spectrum
point wave amplitude spectrum
directional wave amplitude spectrum
stress spectrum

Wirsching correction factor

Gamma function

Delta function

average zero upcrossing frequency in Hz

frequency in radians per second
frequency of the peak of the wave spectrum

natural f;equency of mode x
modal damping ratio

density of water

mean square dynamic response

mean square static response!

mean sgquare stress

mean sguare deflection for mode x

angle of wave incidence



INTRODUCTION

The purpose of this analysis is to investigate the sensitivity of fatigue life calculations
to variations in natural frequencies, modal damping ratios, and directional spreading of the wave
spectrum. The results ¢f such an analysis may be used to reveal the extent to which ungertainties
in the estimates of such parameters will affect the estimated fatigue life of offshore structures
excited by waves.

This analysis does not consider the uncertainties in material properties or the fatigque dam-
age accumulation models themselves. This area is left to the materials specialists. This study
also leaves to others the analysis of the uncertainties associated with the description of the sea
states to be encountered by the structure.

The influence of wave spreading is considered for a given wave spectrum, and a new single
parameter spreading function is introduced. A structural model and its idealization are selected
and cne method of wave force estimation is used. The wave force model assumes that drag exciting
forces are negligible and that finite wave amplitude effects are not significant. In any specific
application these two assumptions can and should be checked. However, for the computation of high
cycle-low stress fatigue damage on large deepwater structures these assumptions are nsually valid.

For the case that drag excitation cannot be neglected, the results of some recent research
at MIT are mentioned. With these results the second order statistics of response may be estimated
including non-linear drag exciting forces.

The exclusion of finite wave amplitude effects is probably valid for large deepwater struc-
tures in low to moderate seas, which contribute the most to high cycle-low stress fatigue damage.
The governing non-dimensional parameter is likely the ratic of wave amplitude to water depth for
slender bottom mounted structures. However, this is an area in which some additional research is
justified.

THE FATIGUE ACCUMULATION MODEL

For the purpose of this study the assumed form of the fatigue damage accumulation model is
that used by Crandall and Mark, 1973, when the stress history is assumed to be described by a
narrow band random process. This formulation implicitly assumes a Palgren-Miner rule for damage
accumulation. Eguation (1) describes the mean rate of accumulation of the fatigue damage index
for a location B in the structure due to a directionally spread random sea with mean directicn 80.

+
v
r8,8) = -2 2% 4P 2r(14ps2) (1)
o c s
F(B,Bo) = the mean rate of accumulation ¢f the fatigue damage index at position g, due to
a wave field with nominal direction of propagation Bo.
az = the mean square stress at position B.
v; = the average zero upcrossing rate of the stress process in Hz.
r{} = the Gamma function
b, ¢ = constants of the S-N fatigue curve of the material as defined by Eguation {2),
where N is the number of cycles to failure with a stress range S.
Ns® = ¢ (2)

This model, and the material constants b and ¢ are assumed fixed. This leaves vo+ and ai as vari-
ables to be considered.

v0+ depends on the frequency content ¢f the wave spectrum as well as the wave amplitude to
stress transfer function for the structure. If the structure has no natural frequencies in the
region of significant wave force, then the response is generally guasi-static in nature and vt is
governed primarily by the freguency content of the wave spectrum. When the stress is primariiy
due to the response at a natural frequency, then vg is strongly dependent on the natural freguency.

In both of the cases the response is approximately narrow band and the use of Eguation (1)
is appropriate. In the case that the response spectrum is composed of significant quasi-static
and dynamic response peaks then it may be necessary to modify the above equation. One such
modification is the use of a final correction factor, such as proposed by Wirsching, 1979, in
which rain flow cycle counting procedures are used to obtain a correction factor to account for



broad band stress spectra. The use of such a correction factor is assumed to be valid here.

The task is then to investigate the sensitivity of the mean square stress cg and the average
zerc upcrossing <frequency, v} , to variations in structural natural frequency and modal damping.

QUASI-STATIC AND DYNAMIC CONTRIBUTIONS TO MEAN SQUARE STRESS

In this study, it is assumed that mean square stress at a point in a structure may be
approximated by the sum of a gquasi-static component due to low freguency waves and a dynamic com-
ponent due to the damping controlled response of natural modes of the structure excited by the
higher frequency components of the wave spectrum. This is comparable to the procedure of supple-
menting a full static finite element sclution with the dynamic contributions of the significantly
responding natural modes.

In this analysis the response is assumed to be quasi-static up to within one half power
bandwidth of the lowest natural frequency of the structure. Furthermore, the lowest natural fre-
quency is not allowed to be less than the peak frequency of the wave spectrum. The computation of
the mean square stress is then accomplished by summing the mean sguare static component with the
dynamic contributions, :

The quasi-static component of stress at a specific location is assumed uncorrelated with the
dynamic components. However, for closely spaced natural frequencies, correlation between the
Stress components of two or more natural modes may have to be considered. The partitioning of
static and dynamic contributions to the total stress is illustrated in Figure 1, a stress spectrum
with a quasi-static stiffness controlied peak and one damping controlled resonant peak.

The quasi-static mean square stress qu, is obtained by integrating the stress spectrum ub
to wo = ml(l-ZE} where w) is the lowest natural frequency and £ is the modal damping ratio of that
mode .

2 c
a =

3 Ss(w)dw (3)

o E

where S (w) is the stress spectrum.

For a complex s*tructure 02 could be computed from a static finite element model. The cal-
culation of the static mean squdre stress may include the influence of drag forces, in which an
equivalent linearization procedure has been used or a more accurate non-linear wave force spectrum
has been computed using the results of Dunwoody, 198l. Drag forces are neglected in the examples
of this report.

This static approximation does neglect any dynamic amplification at frequencies below the
cut off.

The average zero upcrossing freguency of the static component of stress is computed from the
zero and second order moments of the truncated spectrum.

mc 2
S w8 {w) dw wa
2 ¢ bl 1 2
gt w2 A u?s () (4)
W oq )

c
S &8 (w) duw
o S

0. and wz for the example calculations are assumed to be provided for the purposes of the
remainigg disclissions.

The dynamic or damping controlled contributions to the mean square stress are computed sep-
arately. The area under the stress spectrum as shown in Figure 1 for wl(l-2£)<m<ml(l+2£) is de-
fined as the mean square dynamic response for mecde 1.

There may be more than one mode which has significant dynamic response. The dynamic con-
tribution of each must be separately evaluated. In this report the mean square dynamic respconse
of all significant modes will be computed using techniques described by Vandiver, 1980. 1In this
reference it is shown that the mean square dynamic response of an individual mode x is given by:

10
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Figure 1. The partitioning of stress into stati¢ and dynamic components.

3
oi = 2.5Cxpwgs s, tw) Rr(wx; {5)
m_w n Ry Ty
X X
where:
ci: mean square dynamic deflection of the xth normal mode

m_: modal mass

Wyt natural freguency

sn(wx): wave amplitude spectrum evaluated at w
Pt density of water
g acceleration of gravity
R_(w.) . . . .
§;TE_F: ratio of the radiation (wave making) to total modal damping evaluated at Wy

This result is valid for lightly damped modes excited by linear wave forces. The constant
C, depends on structural geometry and wave spreading and is assumed to have been evaluated as
as described in vandiver, 1980. Through knowledge of the mode_shape and structural details, the
mean square stress at a specific location can be related to cx .

If there is more than one mode contributing in a significant way to the dynamic response
then the stress at any specific location in the structure will depend upon the superposition of
stresses from each mode. If the natural frequencies of each responding mode are different, {at
least so that their damping controlled peaks as defined in Figure 1 4o not overlap), then the
stresses contributed by each may be assumed to be uncorrelated and the total mean square stress
will be the sum of the mean square stresses due to each individual mode. This is a consequence of
the fact that waves and hence wave forces of different fregquencies are uncorrelated. If two peaks
overlap then the correlation between stress components must be included.

The mean zero upcrossing frequency for mode x is simply w,/27. The mean upcrossing fre-
gquency for the combined static and dynamic stress history may be computed as a weighted sum of the
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individual contributions as shown below for a system with a single dynamic component.

20 2 1/2
1 2dl (8)

22
g
=3
cq + 04

+
+ A] w

1
v, (H) = o7

where wz and 02 reflect the static response and u% and odlz are the natural fregquency and mean
sguare gynamic stress contributed by mode 1.

THE EFFECT OF NATURAL FREQUENCY ON FATIGUE

If the fundamental flexural natural period of a steel jacket structure was taken to be 3.5
seconds for the purpose of fatigue life computation, and the as-installed natural period turned
out to be 4.0 seconds, how much would the estimated fatigue life be reduced? Recalling equation
{1) and adding y, a Wirsching type correction factor teo account for broadbanded spectral effects,
yields

+
Ya 3, 2,b/2

F o= y—7 (2 Og I'{l + b/2) (7)

Assuming that wave spreading effects have been taken into consideration, then a variation in the+
estimated natural period of a mode will influence three parameters in the above egquation: ¥y, v_ ,
and 0g2. og2 will change because its dynamiz component will change. This is because the wave
spectrum is a rapidly changing function of frequency, and as can be seen in Equation 4, the mean
square dynamic response is proportional to the wave spectrum divided by the natural frequency
raised to the fifth power. vo* will change as can be seen in Equation 6 because it depends on the
natural frequency as well as on the mean sqguare dynamic stress; y may change because the brocad-

bandedness of the stress spectrum may change. If an asterisk is used to denote the result with a
shifted natural frequency, then the ratioc of fatigue damage between twe cases may be expressed as:

b/2
F* v* vo+* 52*
S A v
S

The two extreme cases are simple to evaluate. The first is when the estimated and actual natural
periods are so short that the dynamic component of csz is negligible. This is true for most
structures when the lowest natural frequency corresponds to a period of 2.4 seconds or less. 1In
this case F*/F = 1.0.

The more interesting extreme 1s when cdlz, the dynamic component of stress of a single
natural mode is assumed to be much larger than the static component. This may not always be the
case, but provides a useful upper bound on the variation of fatigue with natural fregquency. One
way to estimate this case is through the ratic cof fatigue damage at two different natural fre-
quencies.

b
+» * y b
rr _ Vo <?*dl) ! (°d1 ) (9)
v + °a1 “y %41

v
o

Because the process is narrow banded, the Wirsching correction factor reduces to 1.0 for
both cases, and the upcrossing frequency reduces to the natural frequency divided by 27.

Yy
\JO = H (10)

The only remaining step is to evaluate the frequency dependence of og 2, the mean square stress
from dynamic response of the mode. This is guite easy and may be estimated directly from Equation
(5), with one minor modification. In normal mode formulations, the product of the modal mass and
the natural frequency squared is simply the modal stiffness.

2 _
Muw) " =K (11)
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If the natural frequency varies because the modal stiffness is different than expected then
the effect on mean Square stress should be evaluated using equation (5). However, if the modal
mass varies, then the effect on mean sguare stress should be evaluated after substituting Egquaticon
(11) into Egquation (5), as follows.

3
R LT ) R ) (12)
1 3 n'*1’ R_(w,}
Klwl T 1

If it is assumed for small variations in natural frequency that the ratio between mean
square modal deflection and mean square stress at a location of concern remains constant, then the
fregquency dependence of the mean square stress is the same as that for mean sgquare deflection as -
given in Equations {5) or (12). This is essentially an agsumption that the mode shape does not
change, which is not true, but is adequate here for the purpose of a simple check on sensitivity
to changes in natural fregquency. Therefore stress and deflection may be related as shown.

2 . Azczl (13)

a1~
If there is any substantial wave spreading, such as cosine squared, then C; is only weakly depen-
dent on freguency and is assumed neot to vary. Similarly the ratio of radiation tec total damping
is assumed constant in comparison to other sources of variation. Lumping all constant gquantities
into A2 in Equation (13), two expressions for cgq12 result, depending on whether the source of
change was mass or stiffness.

2 8 (w,) .
2 _ A n o1 stiffness
a1~ ﬁ; 5 ( changes ) (14)
“1
2 s {wy)
2 _ A n' 1 mass
9a1 - —I w 3 (changes) (13
1

It remains only to evaluate the freguency dependence of the wave spectrum.

Krogstad, 1979, has presented evidence that wind driven wave spectra may be modeled at fre-
guencies higher than the frequency of the peak in the wave spectrum as given below:

3 -4.6

S.__{f) = 1.62 x 102 ¢ n® - sec (16)

max

This is the upper bound curve for spectral values, but possesses the frequency dependence char-
acteristic of the high frequency side of wind driven wave spectra.

Expressed as a function of w, Equation (16) takes the form

S (w) = x 1.62 x 1073 (%F)'4'5 (17)

max

0|
Sl

Assuming all of the constants in this spectrum are absorbed into the constant a2 in Equations (14)
or (15) yields

o] 2 2 éi ~—%—— stiffness
dl Ml wy -6 ( changes ) (18
2
2 A 1
s = = —T mass
dl Kl wy -6 (changes) (13)

Substituting each of these expressions intoc Equation (9) and setting the slope, b, of the §-N
curve equal to 4.1 for welded tubular joints yields

~14.6

F* (“’1*)
= = —— mass
F Wy (changes) (20)
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-18.7

FrYOL m1*) stiffness
F Wy ( changes ! (21)

Therefore, if the natural frequency is l0% greater than predicted, then the fatigue life
will be increased by a factor of 4.02 or 5.94 depending on the source of the error.

These examples were upper bound situations in which the quasi-static contributions to mean
square stress were assumed small. In most cases of practical interest both contributions will be
of importance and the sensitivity to natural frequency variation will not be so extreme.

THE EFFECT OF DAMPING ON FATIGUE

A variation in the estimated damping of a normal mode influences the mean square dynamic
contribution to the total stress directly, and the average upcrossing fregquency indirectly, be-
cause of its dependence on the mean square dynamic stress.

To place an upper bound on the significance of an error in the prediction of modal damping
an analysis similar to the previocus section may be performed. If only the dynamic component of a
single mode is presumed to contribute to the total mean square stress, then proceeding as before
leads immediately to the following conclusion:

* n/2
* R_(w,]} R_{w,)
F - r' 1 r 1 (22)
F Rwali RTiwli

All terms involving freguency directly cancel ocut because the natural frequency does not change in
the example.

The method of computing mean square dynamic stress used in this analysis is somewhat uncon-
venticonal and not widely used in the industry. Therefore, to reflect conventicnal practice the
same upper bound on the sensitivity of fatigue damage calculations to variations in estimated
total damping may be expressed as follows:

g b/2
F* T
= = (q;) {23)

*
when £p and £p are the estimated and actual total modal damping ratios, which are commonly estim-
ated in the range from 1% to 5%.

it is the position of the author that the uncertainty in estimating the ratio of the radia-
tion to total damping is much less than the uncertainty in estimating the total modal damping it-
self, Furthermore, the use of Equation (12) leads to estimates of mean sguare dynamig¢ stress
which are bounded because the ratic of radiation to total damping is at most 1.0. No such upper
bound exists when conventicnal methods of computing dynamic response are used.

Furthermore, conventicnal methods of estimating response regquire independent estimates of
the modal wave force spectrum and the total modal damping. This ignores the fact that the modal
radiation damping and the linear modal wave force spectrum are proportional to one another .

Thus two sources of uncertainty enter the calculations where only one exists.

For the sake of example, suppose in either formulation the damping is underestimated by a
factor of 2.0. This will lead to an overestimate of the fatigue life by a factor of

{Z)b/z = 4.14 for b = 4.1 (24)

for the extreme case of no static contribution to the stress,
THE EFFECT OF WAVE SPREADING ON FATIGUE

For a given sea state the stress time history at any particular point on the structure will
depend con the directional distribution of wave energy. When the stress is linearly dependent on

the wave amplitudes, the stress spectrum at a2 point designated by the character 8 may be expressed
in terms of a transfer function.

2
Sg(8.u,8) = H _(Bw. 9" s (w,8) (25)
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where

Hns(e,m,e) - wave amplitude to stress transfer function
Snstw,e} - directional wave amplitude spectrum
8 - angle of incidence of various wave components

Spreading Functions

The directional wave amplitude spectrum has the property that integration over all possible
angles of incidence must yield the point wave amplitude spectrum.

2m
Sl - 7 s (w,8)4d6 (26)
n
Q

In general, the amount of spreading for a given sea state will depend on wave frequency.
However, most commonly used models assume, for mathematical conveniences, that the wave spreading
for each sea state is independent of freguency. The use of such simplified models is acceptable
because at this time the ability to predict more complex descriptions of the sea is not available,
In this paper spreading models will be of the frequency independent form as shown in the following
equation.

En(m,e) = Sn(m)D(e) (27}

There are two simple limiting forms of the spreading function, D(8). The first is the uni-
directional spectrum in which waves come from a single direction 8., and the second is the totally
diffuse or omni-directional spectrum in which waves come from all 3irections with equal pro-
bability. These cases are given below.

Uni-directional

Sn(m.e) = sn(w)s(e-eo) (28)
Cmni-directional
Sn(w,e) = Sn(w)/Zﬂ (29}

The most common non-trivial spreading function is known as the 'cosine squared'. It is
given below.

2

2
Sn(m,o) Sn(m)? cos™ (6-6 ) (30)
for w/2 2 e-eo < m/2

= { otherwise
The cosine sguared model is awkward to use in a sensitivity analysis because the extent of
the spreading cannot be continuously varied from uni-directional to omni-directional by simple

variations of a single parameter. An equally valid and much more flexible spreading model is
introduced in the next section.

The Elliptical Spreading Model

The elliptical spreading function was initially suggested by Dunwoody and is described here
for the first time. The function is given below (Dunwoody, 1979}.

Vl-e2

D(G-BO) = Zi(l-e cos (B—F;)) (31)

In polar coordinates, D{8-9 ) describes a family of ellipses based on the eccentricity para-
meter e. One of the focii of the ellipse lies on the origin of the coordinate system and the
other focus lies along the direction 9,. The eccentricity parameter can take on any value between
zero and one. 2Zero ¢orrespends to a completely diffuse sea with egual amplitudes of waves propa-
gating in all Jdirections. The spreading function, D(8-8_), is suitably normalized so that the



point wave amplitude spectrum, computed by integrating the directional spectrum over all angles,
equals the criginal point spectrum. This angular spreading function has been chosen over other
possibilities because the amount of spreading is a smooth fupction of a single parameter. The
parameter, e, can be used as the measure of spreading in the computation of fatigue resistance.
The parameter e may also be easily fitted to experimental wave spreading data.

Relative Rates of Fatigue Damage

Variation in the extent of wave spreading may c¢hange the rate of fatigue damage, F, as ex-
pressed in Eguation 7, because of resulting changes in the mean square stress, the zero upcros-
sing fregquency or the Wirsching correction factor. Two different spreading models may be compared
by taking the ratio of the appropriate expressions for the rates of fatigue damage. The result
will in general have the form of Equation 8. No simple generalizations can be made as to the
effect of spreading on fatigue, with the exception that fatigue damage rates based on a worst case
direction in a uni-directional sea will be reduced by spreading. Not much more can be concluded
without evaluating a particular structure. To add some insight to this discussion, the particular
example of a single vertical cylinder is presented in detail.

A simple caisson structure is shown in Figure 2. The structural properties are- assumed to
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Figure 2 Caisson Production Platform Figure 3 Coordinate System Definition
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be symmetric with respect to the longitudinal axis. At any particular level on the structure,
such as the mud line, the stress transfer function at a point on the perimeter defined by the
angle 8 as defined in Figure 3, is given by the following equation.

HHS(B,w,G) = Hns{w) cos(6-8) {32)

where B is the incidence angle of a regular wave component at the frequency uw.

To demonstrate the influence of spreading in this example the rate of fatigue damage F, c¢or-
responding to a spreading function D(B) will be compared to the fatigue damage rate F,, corres-
ponding to a uni-directional spectrum incident on the structure from the angle 6,. D(8) is
assumed to be a freguency independent spreading function which is symmetric about the mean incid-
ence angle, 8,.

For these conditions, each point on the caisson will have stress spectra whose freguency de-
pendence will be independent of the amount of spreading. Put another way, if only the spreading
function is varied, all the resulting stress spectra at a point will be proportional to one an-
other. As a consequence the mean zero upcrossing frequency and the Wirsching correction factor
will not change with spreading. The ratic of the fatigue damage rate, F, with spreading to the
uni-directional case, Fg, will simplify to

2 b/2
r (s (33)
= = [z
(o] [o}

50

The two relevant expressions for mean square stress are given below. Due to the axial symmetry
of the caisson the mean incidence angle, 6,, can be set to zero with no loss of generality. This
has been done in all subsequent calculations.

s % = ? 1H__( )lzs ( )dm?gosz(e-a)u(e)de (34)
s - o ns ¥ nte °
s 2o TH (@ ls )dm?gosz(e-ﬂ)ﬂ(n)dﬁ (35)
so o ns tSy o

Substitution into Equation 33 leads to

2m 2
J cos” (8-B) D(g)dd

= Q 5 (36)
o cos” (B)

"lll"d

The above ratio can be evaluated for various spreading functions D{(8). This is shown below
for the cosine squared and elliptical spreading functions.

Cosine squared:

b/2
F _ 3 1,2
F_o = [I + i tan®g] {(37)

Hence, for the worst case direction 8 = 8, = 0, the fatigue damage rate ig reduced to

b/2
F 3
- 13 (37a)
Fo 4
For b/2 = 2.03 (37b)
g_ = .554 (37¢)
o
and the fatigue life
1 . 1
L. o1exk (378)
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The fatigue life is increased by a factor of 1.8.

Elliptical spreading:

b/2
= {6 + tan28(1-G)] (38)

?Wcosze Vl-e2 a8

"':I["I

where G = {39)
¢ 2n{ l-e cosb)

Again for the case f = 6, = 0 a simplified expression is obtained.
;_ - & b/2 {40)
o

The ratio of the corresponding fatigue lives is simply
L g ~B/2 {41)
o

These results are shown in the following table for various values of the spreading parameter e,
and b/2 = 2.05.

TABLE 1

Spreading parameter e versus G, F/F0 and L/Lo for b/2 = 2.05

e G %- %— Description of Wave Soreading
o o
0 6.5 .24 4.2 omni-directional
.5 0.53 .27 3.7
.7 0.58 .33 3.0
.8 0.62 .38 2.6
.85 0.65 .41 2.4
.8 0.69 .47
.95 0.76 .57 1.8 approximate cosine sguared
.99 0.87 .75
1.0 1.0 1.0 1.0 uni-directional

These results show that cosine squared spreading extends the fatigue life by a factor of 1.8
while omni-directional spreading would increase the life to 4.2 times the uni-directional result.
The possibility that omni-directional spreading might happen in nature may seem remote. However
for any linear stress transfer function for a structure of arbitrary shape

P (8,w,8)1 = H__(B,u,0+m) (42)

it is therefore only necessary that the waves be uniformly distributed over # radians to achieve
the maximum extension of fatigue life over the uni-directional spectrum coming from the worst case
direction. Structural symmetry may also reduce the total angle over which the waves must be
evenly spread to achieve the maximum benefits. In some cases, a realistic amount of spreading,
such as cosine squared is sufficient to derive the maximum benefit. An example is the fatigue
caused by the heave response of a sguare planform tension leg platform as discussed in Vandiver,
1980.
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CONCLUSIONS

By means of general formulations and a specific example, the dependence of fatigue on the
uncertainties related to natural frequencies and damping ratios have been demonstrated.

Uncertainties related to the prediction of structural natural frequencies are primarily re-
lated to the structural idealizations or models used in the design process. The greatest weakness
is probably in the area of foundation modelling. The behavior of soil under cyclic loading condi-
tions remains a rather uncertain field. Assumptions regarding soils stiffness have dramatic im-
pact on the estimation of structural natural fregquencies,

The uncertainties related to damping estimates have several sources. One of the greatest is
a general lack of accurate estimates of damping on existing structures. This issue and a method
for obtaining improved measurements of damping on existing sturctures are addressed by Campbeil,
1980. The second reason for uncertainty is that direct estimation of individual components of
damping are rarely made, and the knowledge required for making such estimates is not widely availl-
able in the industry. To understand the complete damping problem one must understand the £luid
mechanics, the soil mechanics, the structural mechanics, and their interaction. 2 final source of
misuse of damping is that the relationships between exciting forces and damping mechanisms are too
frequently ignored. A versatile single parameter wave spreading function has been introduced and
used to demonstrate for a particular example, the importance of wave spreading in fatigue calcul-
ations.

The purpose in this study was to highlight the significance that estimation of natural fre-
quencies, damping ratios, and wave spreading has in the calculation of the fatigue life of a
structure. The results are in a subjective sense quite general, even though a specific fatigue
damage accumulation rule was assumed. Of the various high cycle damage accumulation rules pro-
posed to date, none are so different that the gualitative insights contained in this paper would
be invalidated. These insights should be of help to the designer in judging the relative im-
portance of the various factors which must be considered in the performance of a fatigue life cal-
culation.

These results might be extended by means of a sensitivity analysis on an actual numerical
model of an coffshore platform intended for use in, for example, the North Sea or the Gulf of
Mexice. 1In a very recent paper (Vugts, 198l1), the sensitivity of fatigue damage rate to vari-
ations in water depth, damping ratios and several other structural parameters has been investi-
gated and is recommended to the reader.
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ABSTRACT

The dynamic response characteristics of an opera-
tional single pile platform are investigated in detail.
Wind, wave, and response time histories recorded on the
platform in March 1980, form the basis for comparison
of predicted and measured dynamic response. In the
predictive analysis, the compenents of the total modal
damping are separately computed. These damping compen-
ents include the steel hysteretic, the wave radiation,
the viscous hvdrodynamic, and the soils damping. Re-
spense in the two fundamental bending mcedes of the
structure are predicted using a technique based on the
principle of reciprocity for ocean waves. Good agree-
ment between predicted and measured response levels is
attained. Combination of the results of the response
prediction method with the results of a dynamic finite
alement model of the platform leads to a versatile ex-
pression for the mean rate of accumulation of fatigue
damage. This expression, wave spreading factors, and
climatological data are used to estimate a fatique life
for the structure.

INTRODUCT ION

The understanding of the dynamic response of deep-
water structures is a key element in the predictiocn of
fatigue life. This is particularly true of structures
with lightly damped natural vibration modes whose nat-
ural periods exceed three seconds. There are very few
structures that respond linearly in most sea conditions
and have sufficiently simple configurations to allow
accurate thecretical predictions of dynamic response
in directiconally spread random seas. The vertical cy-
lindrical caisson satisfies these conditions.

A complete dynamic analysis of a single caisson
structure 1s described in this paper. The modal damp-
ing ratic is predicted by analytic means. & finite elaeo
ment model is used to predict the natural mode shapes
and soil behavicr. The mean square response of the
structure 1s predicted and compared to field measure-
ments with very good agreement. A fatigue life compu-
tation 1s presented which accounts for variation in
directlonal spreading of the seas.

The caisson has many similarities to other more
complex fixed deepwater structures. It has similar
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mode shapes, natural periods,
caisson has the same range of
Keulegan-Carpenter numbers as
on jacket structures. It has similar soil behavior.
As a consequence the insights gained from an in-depth
analysis of this simple structure provide a better un-
derstanding of the behavior of much larger and complex
but dynamically similar deepwater platforms.

and damping ratios.
Reynolds numbers and
large tubular members

The

PLATFORM DESCRIPTION

The single pile platform which is the focus of
this report is a triple-decked single well gas produc-
tion platform located in South Marsh Island Block 33 in
the Gulf of Mexico. A three dimensional drawing of the
platform, which i1s operated by AMOCCO 0il Company., is
shown in Figure 1. The caisscn stands in 89 feet of
water and the pile diameter is four feet at the water
line and seven at the mudline. The annulus between
the main pile and the drive pile is grouted. The nat-—
ural pericds of the two orthogonal fundamental flexuralj
modes of the structure are almost identical, each with
a value of approximately 3.1 seconds. With these nat-
ural periods, the platform exhibits significant first
mode dynamic response.

In March, 1980, the authors recorded wind, wave
and response time histories on the structure for later
analysis and comparison with predicted response values.
A complete descripticn of the data analysis is contain-o
ed in Ref. [l). A total of six reesls of data were re-—
corded on three separate days, 2 summary of the per-
tinent information derived from the five reels which
contained horizcontal biaxial accelerometer data is
shown in Table 1. The other reel of data, reel 2,
time histories from four accelerometers distributed
vertically over the structure but pointing in the same
direction. This data was used to sstimate mode shapes
and is reported in OTC Paper No. 4286 [2]. Cne of the
five remaining data sets, reel 5, included tests of
a dynamic abscrber. These results are described in
OTC Paper No. 4283 [23].
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SINGLE-DEGREE-OF~-FREEDOM EQUIVALENT MODEL

This single pile platform responds significantly
in only its fundamental bending medes. To predict the
response in these natural modes, an equivalent, linear,
single degree of freedom (SDOF) system was defined for

major damping sources. In the next four sections, each
source will be identified and an equivalent modal damn~
ing ratio will be estimated from theoretical considera-
tions.

DAMPING RATIO PREDICTION

both modes.
which behave linearly and have small damping. The
total response 1s cobtained by superposition of the modal
responses.

The
response

equation of motion that represents first mode
of the caisson when excited by ocean waves
contains terms wnich depend on the relative accelera-
ticn and velocity between the water particles and the
generalized coordinates which represent platform mo-
tions. For this structure in commonly occurring low to
moderate sea states non-linear drag force or velocity
dependent excitation is negligible and can be dropped.
However, this does not necessarily imply that viscous
damping losses zan be ignorsd. These must be evaluated
separately.

When the teotal damping is small, damping can te
modelled using an ecquivalent linear dashoet which
aquates platfiorm energy losses with the SDOF model en-
ergy losses. The SDOF eguivalent equation for a mode
iz of the form

+ RSOIL)q + Kg = F(t)

+

RAD R

Vi (1)

Mg + (RST+ R

where M = modal virtual mass of the structure
{includes added mass)
RST = modal stsel hysteretic damping
R = modal radiation or wave making damping
RVH = modal viscous hydrodynamic damping
RSOIL = modal soils damping
¥ = modal stiffness of the structure
q = generalized coordinate obtained from modal
analysis for the particular mode
F{t) = total linear modal force

The undamped modal natural frequency, un, and damping
ratis, ET' are

w = ¥ OK/M. . e e e e e - . (2)
.. % FsrPaan™MtRsom
St T Ze o Zw M
n n
= + £ + .
Sst * Srap * fvn * Ssom (3)
Using these, the SDOF equivalent system reduces o

“ P 2
g + .wqgmq + w,"q = F{t) /M . {4)

To use this equation to accurately predict response re-
guires knowledge of the total modal damping present
within the vibrating system. As suggested in Equaticn
3, the total modal damping is a combination of four

This technigue is applicable for structureq

Steel Hysteretic Damping

Steel hysteretic damping refers te the energy lost
ldue to internal dissipation within a steel member under
cyclic loading. As discussed in Ref. [1], the fraction
of the total strain energy dissipated per cvcle due to
steel hysteretic damping within the outer pile of the
caisson may be approximated by the following:

Av

=% - 208 = 2m(.0047) C. . (8
ST
where AVST = strain energy dissipated in the outer pile
per cycle
VST = peak strain energy stored in the outer pile
=12/ . .
J = constant = 500 x 1lC psi for SAE 1020
steel
E = Youngs modulus = 29.5 x lO6 psi for SAE

1020 steel.

The energy loss per cycle can be simply expressed
in terms of a linear equivalent damping ratio for a
gingle degree of freedom system. The correct relation-~
ship is given by

4W£ST = AvST PR . . - (6)
vST
Therefore,
.0047
EST = 3 = 0.24% . . . . . . . {7}

This damping ratio is assumed to apply t¢ the other
materials in the structure as well; particularly the
grout. The grout would probably have somewhat higher
losses than this and therefore the value of 0.24% as

an overall material hysteretic damping is likely a lower
bound. In the remainder of the report this damping will
continue to be referred to as Es + in reference to the
losses in the steel. However, 12 is applied to the en-
tire mechanical energy of the structure.

Radiation (Wave Making) Damping

A platform oscillating in the ccean creates waves
which radiate outward, dissipating energy away from the
structure. For a vertical cylinder of uniform diameter,
the modal radiation damping can be estimated using
linear potential fiow thecry. & derivation is contained
in a 1976 report by Petrauskas [4].

Based on these results, an approximate expression
for the medal radiation damping ccefficient for a non-
uniform vertical cylinder which creates deepwater radi-
ated waves is
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T W ¢
W kd k(z+h)
R (wy = 70— S diz)p, (5 P()e dz
RAD e.,kh + 4kh h 12
G
. +
Stz e gy (8)
=h
where z = vertical coordinate, positive upwards from
the water line
o, = density of water

w = frequency of radiated waves
k

= wave number

d(z) = cylinder diameter
h = water depth
p(z) = mode shape (estimated from finite element
model)
m ,kd, 3 . k 1
= - (== —_ < =
Pl(kd/Z) 3 { 2) for 3 3

Equation B was evaluated numerically using the
rarameters associated with the operational single pile
platform in first mode response. The modal radiation
damping ratio was found to be

ERAD = 0.11%

. {9)

This result is approximate in the sense that the
Petrauskas result is strictly applicabkle to a cylinder
with & uniform diameter. Egquation B relaxes this con-
straint to allow for a diameter which changes slowly
and then cnly at a substantial distance below the
waterline. As a check on this result, the radiation
damping was computed for a cylinder with a constant
diameter of four feet. For it ERAD = 0.10%.

Viscous Hydrodynamic Camping

Viscous hydrodynamic damping is related to the
separated flow drag force term in Morison's eguation.
an expression for the modal viscous hydrodynamic damp-
ing coefficient applicable for first mode response of
a vertical cylinder as shown by Dunwoody (3] is

Q
1 /8 2
Ryg * Iy 30,8 C Y ;osiz V(z)dz (10)
where CD = drag coefficient
c; = r.m.s5. relative velocity.
As defined here, R is proportional to the relative

velocity, wiich increases with sea state, and can only
be cbtained by iteration. However, if water particle
vaelocities are assumed o be much larger than struc-
tural velocities, J* can be approximated by the r.m.s.
water particle velodity, 0, which can be estimated
from Equation 11. v

) * - P
g %z) = f an’£’ cn(f)ez‘zdf 11

u

where f = cyclic fregquency (Hz)

Gn(f) = wave amplitude spectrum
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Equation 11 is valid for deep water waves which decay
exponentially. Using a Bretschneider (ITTC) [6] two
parameter wave spectrum,

4’ 4
. ~-1. f
G (f) = 1.25 2 fp o 1.25¢ p/f) (12}
al 4 ] 5
£
where HS = significant wave height
fp = peak wave frequency (Hz).

estimates of the modal viscous hydrodynamic damping were
obtained for the sea states corresponding to experimen-
tally derived wvalues of H_ and f Typical values of

I3 in the experiments were in the vicinity of 0.15%,
The detailed results will be summarized later. As com-
puted above, the modal viscous hydrodynamic damping is
probably an upper bound since a unidirectional wave
spectrum has been used to compute cu. Spreading would
decrease the effective Ou.

Scils Damping

Compared with the cther components of the tortal
damping, the characterization and modelling of soils
damping is more complex and less well established. Two
types of soil damping exist:; material {internal) soil
damping, which is a hysteretic form of damping, and
geometric (radiation) damping, which is analocgous to
wave making damping. Material damping is usuvally spe-
cified as the fraction of soil strain energy dissipated
per cycle and is expressed as 47 times a constant soils
damping ratio, £ md’ which 1s believed to have a value
between 3 and 10%. g is alsc known as the specific
damping ratio. Gecmetric damping is present only if
the frequency of oscillaticn exceeds a thresheld value
which depends on the soil stratum. In general, geomet-
ric damping is not significant for small structures at
the frequencies associated with wave loading, in Gulf
of Mexico sediments.

As developed in detail in Ref. [l], an equivalent
modal scils damping ratio Es L can be estimated from
the soil material damping raglo £ by computing the
ratio of the energy loss per cyclé in the soil to the
total caisson energy. The method utilizes the lumped
soll spring foundation of the finite element idealiza-
tion of the caisson to compute the soil strain energy.

h . X :
The final expression fer gSOIL is
AV £ n
SOIL smd 2
= ——==" = Z Yy . .
gSOIL 41v 2 i=1 Ks(zl)w (21) (13)
T Mus
n
where Meorr = 4"ogma Vsor
- 1 2 2
= 4T -
r’Smd(E ZKS(ZL)W (zi)ao !
1.2 1, 2 2 .
VT = 3 Kao =3 Mwn a = total caisson
energy
Ks(zi‘ = lumped soil spring stiffness at z = 2,
i
2
I (zi) = value of the mode shape at z = z,
1
n = number of lumped soil springs used in

this finite element model.




Bguaticn 13 was evaluated using the four soil
springs of the finite element model of the caisscn and
the results are shown in Table 2. This technigue is
approximate and research leading to the development of
new technigues is warranted.

TOTAL DAMPING RATIO MEASUREMENTS

The total modal damping was estimated for each of
the two fundamental bending modes from biaxial acceler-
cmeter data recorded in March 1980. To isolate the
fundamental medal directions, a correlation function
rotation scheme based on a Mohr's circle algorithm was
used. In this analysis, the modal orientation is de-
fined asz that orientation for which the time histories
from a biaxial pair of accelerometers would have a min-
imum coherence at the natural frequencies of the two
fundamental bending modes. This procedure is described
in Ref. [l]. Once the modal orientation is determined,
single-channel MEM .(Maximum Entropy Method) spectral
analysis 1s used to estimate natural freguencies and
damping ratios. The damping ratio sstimate is based on
the half-power bandwidth methed {7}.

The results of the damping estimation are shown in
Table 2 for three different days of testing. In this
table, items 2, 3, 4,6, and 7 were thecretically ob-
tained, as previcusly described; item ! is an experi-
mental value. The error bounds c¢n the measured total
damping ratio axe 25% confidence bounds. The viscous
hydrodynamic damping was estimated, assuming a drag
coefficient of 1.0 and applying values of H and w_ de~
rived from the measured wave spectra. Row > is the
solls damping required to make the total experimental
damping value egual the total theoretical. The values
shown suggest an average value of ESOI = 0.86%, which
falls in the expected range of the ana&ytically esti-
mated values.

RESPONSE PREDICTION

After the modal -equivalent damping components

nave been estimated, the next step is to predict modal
response. The reciprocity method of response predic--
tion, proposed by Vandiver (8], will be used for this
purpose. This approach utilizes the principle of re-
ciprocity for ocean waves which relates the radiaticn
damping of a structure oscillating in a calm sea to the
linear wave force exarted on the structure if it were
neld fixed in incident waves. This technigque yields a
simple result for the mean sgure modal response and its
use is valid only for lightly damped modes excited by
linear wave forces. This method directly incorporates
wave spreading effects,

The caisson is an ideal structure to testc this
modal response prediction technique because the struc-
ture is axi-symmetric and the two fundamental bending
natural freguencies are almost Identigal.

To demonstrate the performance of this resconse
prediction method, the coordinate system shown in Fig-
ure 2 was used. In %his figqure, the x and y axes de-
fine the erientaticn of the two fundamental bending
modes of the caisson. The angle §_ defines the angle
between the x-modal direction and ghe mean wave di=-
rection in a directionally spread sea. The terms ¢
and dvz represent the mean square modal displacemenE
response on the nelideck along the x and y modal axes,
respectively.

The prediction of the mean sguare modal response

of the x-mode within two half power bandwidths of the
resonant frequency fx is shown in Equation 14.

3 c
2 CePT “RAD(fx) )
% =TT S Taed b
gomM_£ =rttx
X X

The expression for the y-mode is identical with the x
supscripts replaced by vy subscripts. The term C_ de-
pends on both structural geometry and the directlonal
wave amplitude spectrum. In this papex, the directio- .
wave amplitude spectrum is modelled using fregquency in-~
dependent spreading functions as defined in the follc .-
ing equation.

' = e . 13
Gn(f 8} Gn(f) D(H {13}

where Gp(f,a) = directicnal wave amplitude spectrum

D(e)y =
5 =

spreading function
angle of incidence of various wave
COMPOnEnts

when integrated
the directicnal

over all possible wave incidence angles,
wave amplitude spectrum satisfies

m

G () =fG (£,9) 4 .. ... .. ..
o n

1l
" (1e)

For a single pi.e platform, the expressions from Ref.
[8] for Cx and Cy simplify to

2T

.
c, = 2f D(®eos™8a@8 . . . . L .. .0 0. . LI
0
and
2m 2
C =2 D(®)sin®888 . . . . . .. ... .(18)
¥ o

The sum of Equations 17 and 18 is trivial to evalu-
ate, pecause sin“Y plus cos?f yields 1.0 and the integ-
ral

2T
SD®a8 = 1.0 . ... .. e (19)
e}
and therefore
c +C =2.0 (20)

Therefcre, even though the actual spreading function is
unknown, the total mean square response may be predicted
byzsumming the individual mean square reassponses Ux and
o)

¥y
3
o= 1 £ (f )
2 2 \ D
%+ T EE S50 ey (21,
¥ 40T £ spiix

where it has been assumed that the natural fregquenciec,
modal masses and damping ratios of both modes are ap-

proximately equal. The x subscript has been retained

L.
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in Equation 21 to reflect the properties of both modes.
It has also been assumed that the responses of the two
medes X and y at their common natural frequency are
uncorrelated. This has been confirmed in
the field experiments. The coherence between the two
modal responses is less than 0.05,

The measured data is in terms of acceleration.
For purposes of comparing predicted and measured data
1t 1s convenient to express Equation 21 in terms of
mean square acceleration. The mean square response
within a half power bandwidth of the natural frequency
is a narrow band random process and the following simplg
relation may be used for either the x or vy directed
modes.

2
F-.
x

2

16W4f 40 (22}
X =

Therefore, the total mean sguare acceleration may be
expressed as,

20 g (£)
2 2 2 _ o7 RAD ' “x
Y T Y% Tomr S T (23
X X T x

The natural frequency f_of this platform was measured
as well as the total modal damping £_, The modal mass
was determined from the finite element model and the
radiation damping was computed theorstically. There-
fore using measured values of the wave amplitude spec-
trum evaluated at the natural fregquency it is possible
to predict the tetal mean sguare acceleration response
of the structure and compare it to that observed.

The results are summarized in Table 3 for data
taken on two separate days. The predicted and measured
values are in veryv close agreement. The actual error
in the predictions is substantially less than might
- [have been expected considering the uncertainty in the
estimates of the total damping ratio. This is the
first known experimental confirmation of the response
prediction technigue embodied in Equation 14.

DESCRIPTION OF THE FINITE ELEMENT MODEL

In order to estimate both the fundamental flexural
mode shape and the relationship between platform dy-
namics and stresses within the pile, a 2l-ncde two-
dimensional dynamic finite element (F.E.) mcdel of the
single pile platform was developed. In this model, the
platform was represented using 14 beam elements and the
soil was replaced by four linear soil springs. A sche-
atic of the F.E, model is shown in Figure 3 and a de~
tailed description of its formulation is ¢ontained in
Ref. [1l]. 7To achieve model natural periods which
iclosely matched the measured values required iteration
lof the soil spring stiffnesses.

Both the fundamental flexural mode shape and the
scil spring stiffrnesses required in the damping esti-
mation were cbtained from the optimized F.E. model. In
addition, the maximum stress in the pile, when subject-
=d to sinuscidal wave excitation, at the natural fre-
quency was found to be at a level approximately 26 feet
pelow the mudline. For vibration in the fundamental
mode, the helicopter deck displacement to maximum
stress transfer function was determined to be
4.95 KSI/foot, This value is required later in the
prediction of fatigue life.

DYNAMIC RESPONSE FATIGUE LIFE ESTIMATION

For cffshore structures experiencing significant
ldynamic response in low and moderate sea states, the
governing design criteria 1s often the prevention of
failure caused by low stress, high cycle fatigue. To
estimate the dynamic response fatigue life of the ope-
rational single pile platform, the reciprocity method of
response predicticn and the dynamic¢ finite element mo-
del were combined with a fatigue accumulation model
which assumes the stress process is a narrow band
Gaussian process with Rayleigh distributed‘peaks. The
result is a versatile expression for the mean rate of
accumulation of fatigue damage. The details of this
procecure are outlined below.

The expressicn for the mean rate of accumulation of
fatigue damage, based on a stress range S-N curve, is

from Ref. [2]
+ L/2
Yo 3?/
F, = — (270 ") T(i+k/2) (24)
i c
where F, = mean rate of accumulation of fatigue damage
at a location in the structure which ex-
periences a mean square stress 052
+ .
Vg = average zeroc upcrossing rate of the stress
process
'} = Gamma function
b, ¢ = constants of the stress range S-N curve.

The dynamic finite element model was used to determine
the relationship between the maximum stress in the pile

and helideck displacements in mode x. Mathematically,
this relationship can be expressed as
2 2 2
g “ =B . (25)
s X
where B = maximum stress/helideck displacement transfer
functicn
B = 4,95 KSI/ft.
2 . : .
A value of O was estimated using the reciprocity

method, as defined in Egquation 14, in conjunction with
the Bretschneider (ITTC) wave spectrum of Equation 12.
This technique requires that the wave environment at
the location be modelled with a set of significant wave
height (Hs) and peak wave perjod (T )} pairs, each with
an assigned anhnual probability of ofcurrence (P.). The
resulting expression for the mean rate of accumiilation
of dynamic response fatigue damage in mede x due to sea
state i is shown in Equation 26.

b/2
2 3 2 4 - £f 4
al H T
fe [BA9 “s fp “RAD -1.25(=E)
LTz 3 0 10 E & T
azn X f T
x
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+
where = f
0 X
F o= 1/T
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In this equation, all the parameters which affect the
dynamic response fatique life of a structure are in-
cluded in a readily usable form. Finally, a fatigue




life estimate (FLE) can be cbtained using

O )
i

where 3 total number of sea states.

Fatigue Life Calculation

The fatigue life of the operaticnal single pile
platform was estimated using the twelve Gulf of Mexico
sea states given in Ref. [10]. For each sea state,
Equation 26 was used to cocmpute the rate of accumula-
tion of fatigue damage associated with first mode re-
sponse of the caisson. The AWS-X modified stress range
3$=-N curve was used to determine values for b and ¢
(b = 4.38, ¢ = 2.64 x 1011). 1In addition, it was as-
sumed that the modal frequency and mocdal mass remain
constant over the lifetime of the structure. For the
initial estimate, the ratio § /ET was fixed fer all
sea statas at 0.2. The selec%ﬁgn of a2 representative
value of € is not straightforward. However, two use-
ful limiting cases may be easily evaluated.

The worst case scenario is one in which over the
lifetime of the structure the seas are unidirectional
and only excite the x directed mode. In other words,
all waves are incident at 9=0. For this case, the re-
sponse in the y direction must be zero and therefors,
from Eguation 20, Cx = 2.0.

The least damaging case is one in which the di-
rectional spreading is uniform over all angles. The
result of this is that both modes must respond equally
and therefere, Cx=Cy=l.0.

These two limiting cases will vield upper and
lower bound fatigue life estimates for chis caisson
when substituted into Eguations 26 and 27. The result
for the uniform spreading case is a fatigue life of 16l
years. Unidirectional spreading reduces this estimate
to a worst case fatique life of 35 years. These cal-
culations were computed using a conservative estimate
of §_ . /& = 0.2. In fact, the field measurements in-
dica%%nitTis approximately half that value. Accounting
for this increases the estimated fatigue life by a fac-
tor of approximately four. These results indicate that
the fatigue life of this structure is between 140 and
644 years. These predictions do not account for fa-
tigue damage caused by quasi-static response of the
structure to large low frequency waves. Though many
fewer in number, these waves will reduce the fatigue
life somewhat. HNon-linear drag exciting forces at the
natural frequency of the structure have also been neg-
lected.

Many factors influence fatigue life predictions.
Natural freguencies, damping ratios, and wave spreading
are particularly important. For a more compliete dis-
cussion of the sensitivity of fatigue life predictions
to these factors the reader is directed to Ref, [11].

CONCLUSICNS

In this paper a complete dynamic analysis of a
single caisson platform has been presented. A finite
elemant model provided mode shapes, stress transfer
functions and some insight into the behavior of the
soil. Predictions of all components of damping were
made. Pield measurements were used to obtain estimates
of natural frequencies, damping ratios and mode shapes
{see OTC 4286}. The measured mean sSgquare reasponse was

compared to predictions based on the recipreocity met,
and found te be gquite accurate.
the fatigue life of the structure was performed, in ..
a way that the sensitivity of fatigue calculations to
directional spreading of the waves was clearlv indi-
cated,

NOMENCLATURE

ao modal amplitude

b, @ constants of the stress range S-N curve

B maximum stress in the pile per foot of
helideck displacement

CD drag coefficient

Cx, cY constants dependent on directional spreadi-:

4a oile diametey

D(8} wave spreading function

E Young's modulus of elasticity

£ cyelie frequency (Hz)

fp peak wave frequency

FLE fatigue life estimate

F{t) modal wave force on fixed structure

Gn(f) wave amplitude spectrum

Gn(f,e) directional wave amplitude spectrum

h water depth

Hs significant wave height
constant in steel hysteretic damping
expression
wave number

K total modal stiffness

Ks(zi) seil spring stiffness at 2=z,

M total modal virtual mass

Pi annual probability of occurrence for sea
state i

Pl(kd/Z) function defined in [4)

g modal displacement coofdinate

RQAD modal radiation damping coefficient

RST modal steel hysteretic damping ccefficien.

- total modal damping coefficient
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R modal viscous hydrodynamic damping coefficient |Don Green was especially helpful in conducting the
VH field experiments.
TE peak wave period REFERENCES
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TABLE 1

SUMMARY OF WAVE, WIND AND RESPONSE DATA
i t ! i
% l REEL #1 REEL 43 _]_ REEL #4 *REEL =5 CERL 29 I
L 4
! ! I ! '
itate v 3/24/80 3/25/80 3/28/80 1/28/30 t 3/28/30 |
1 1 ! J
i Time 1530 - 1630{1215 =~ 1335{10%0 - 1210 (1510 ~- 1615i1630 - ].715\
| ! |
{Observed Wave Height (£t} i NW 1-3 SNE 53-8 ENE 2-4 ESE 3-5 | ESE 3-3 i
g
iOhserved Wind Speed (knots) NW @ 20 ENE @ 30 ENE 2 10 ESE @ 20 ESE 3 20 |
ipeau-—. Wave Period (sec) - 7.28 5.79 7.10 7.10
| i
iSignificant Wave Height (ft) [ - 4.12 3.32 3.59 3.80
i_ :
%_Orientaticn of Mode x ‘25°s of E [l3°N of E 35°N of E "F'S of E 15°5 of E
: . I H
|iiode % Natural Frequency Est. (Hz) \ . 325 | L323 .323 ' . 323 . 324 i
In — ; ;
ix Mode Total Damping Ratio Est. L.1+/-.3 l 1.0+/-.4 SO/ 2 LJ..9+/-.5 9+/-.4 ]
‘ - ; 1
}Or:’.entation of Mode ¥ 20°0 of 2 132“5 of £ 110°5 of E 138N of T 30°N of E !
" H i "
: . | ! !
‘Mode v Natural Frequency Est. (Hz) [ .327 i 328 .327 1 .327 L3223 |
} H ;
F Mode Total Damping Ratio Est. ‘ L.3+/-.3 l.4+/~-.4 1.1+/-.3 | L.9+/-.7 L.3+/-.5 J
; L
*Dynamic Absorber was operating during this reel. See OTC 4283
TABLE 2
CAMPING SUMMARY
Reel 1, 3/24,/8Q Reel 3, 3/25/80 Reel 4, 3/28/80C !
MCDAL CAMPING |
RATIO ESTIMATES (%) Mode x Mode v Mode x Mode y Mode x Mode y
1. &T -~ Total Measured L.le/=-.3 1.3+/=.1 L.0+/=.4 L.4+/-.4 LIk /=2 l.1l+/=.3
2. Bgy - Stesl . 9.24 9.24 0.24 0.24 0.24 0.24
Hysteratic
3. ER.AD - Radiation 0.11 0.11 .11 .11 0.11 0.11
4. Gy - Viscous . ¢.11 0.11 2.17 .17 9.14 3.14
Hydrodynamic
4
P |
5. & - . !
T RAD - VH .64 .84 .48 .88 .41 (61
* Ggp! ;
i 1 }
. ! .
. = J.4 .S ' . .5 .5 i0.5 . i
J‘a foopr, £OF §_pq = 9.93 0.53 i 5.53 G153 3.53 | 3 0.53 i
. | | 1
i ! | Z
‘}:. cso1n for C’s:nd = .35 .88 .38 J.38 i J.88 0.38 L 0.38 i
= ! L ! L ]
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COMPARISON

TABLE 3

OF PREDICTED AND MEASURED

HELIDECKX ACCELERATICON RESPCONSES

REEL 3 REEL 4
Date Recorded 3/25/80 3/28/80
Natural frequency 323 323
£ (Hz)
X
G_{£] [ . .
"]( < ( /Hz) 1.2 7
;RAD(fx) (%) .11 W11
:',T(fx) (%) 1.0+/-.4 L9472
£ g L1109 .
*RAD T il 122
Il
o % (eefrsect 1.09 .71
ap
{95% confidence (.78 to 1.82} (.58 to .91)
bounds}
g 2 (ft2/sec4) .91 .72
am
B 2,
= 3182 lb-sec /ft, (slugs),modal mass
= 1.988 lb—sacz/ft4(slu<;s/ft3)
2
= 32.11 ft/sec
2 = total predicted mean square helideck displacement T -
ap S e Y
o el
: € nelideck displ t g _ T
= & h ; v g i e - el
am otal measured mean sqguare he ec isplacemsn ) ==
e P —
e

Fig. 1 — Caisson production platiorm
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DIRECT WAVE FORCE MEASUREMENTS
ON A MODEL TENSION LEG PLATFORM

by

Professor J. Kim Vandiver
Massachusetts Institute of Technology

Abstract

A 1:50 scale model of a tension leg platform without tethers was
rigidly attached to a five degree of freedom load cell frame. Regqular
waves with prototype periods of 4.7 to 14.1 seconds were passed through
the model. For each wave frequency wave amplitude to wave force transfer
functions were measured as a function of incidence angle. Wave incidence
angles were varied in five degree increments. Force transfer functions
for the five rigid body degrees of freedom in heave, pitch, roll, surge,
and sway were measured and compared with numerical predictions.

By applying the principle of reciprocity for linear wave forces,
these results may be used to calculate the radiation (wave making) damping
for motion of the TLP in these five rigid body modes. TFurthermore the
results may be used to directly estimate the dynamic response at a natural
period of the tethered structure in heave, pitch, or roll, including the
effects of directional wave spreading. Sample calculations of radiation
damping and dynamic response prediction are included.

INTRODUCTION

For large floating siructures such as TLP's there are two common ap-
proaches for the prediction of dynamic response to wave exciting forces:
model testing and numerical prediction. Both approaches have weaknesses.
Dynamically scaled models have scale ratios of 50 to 1 or greater, be-
cause accurate modelling requires th: - water depth be scaled linearly with
the structure. As a consequence, Reynolds number similitude is never
achieved. This causes concern, because, for example, the modal damping
zxtios in heave, pitch, and roll are likely not modelled correctly and
are very difficult to compensate for when one attempts to scale up to the
prototype size.

Numerical models are not entirely trustworthy either, because among
other factors, no data from an actual structure is available to benchmark

the code. Furthermore, for structures of camplicated shape, the soluticns
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for exciting forces and damping require many approximations.

A third method is available - the direct measurement of exciting
forces on scale models, held fixed in Place by load cells. This method
has the advantage that it is much less sensitive to lack of Reynolds
scaling than a iynamically responding medel. This is true, because, near
the natural frecquencies of a dynamically responding model, small inac-
curacies in damping lead to large inaccuracies in observed response. A
fixed model does not exhibit resonant behavior and therefore small vari=-
ations in viscous forces cause negligible errors in determining exciting
forces. The disadvantage of the fixed model approach is that it can only
be applied easily in wave conditions that result in linear wave force re-
lations and linear structural response. Fortunately, due to their very
large size, TLP's respond linearly at normal wave frequencies in all but
the most severe sea states.

Directly measured exciting forces can be used to predict dynamic re-
sponse including the effects of directional spreading of the seas. Directly
measured forces can be used to calculate the radiation damping of indivi-
dual structural response modes "such as heave, pitch, and roll. This paper
recounts the historical, theoretical, and experimental framework which
substantiates this approach and presents the results of such a model test

conducted on a model of a TLP in 1979.

Historical Perspective

The fundamental principles relating linear wave exciting forces to
radiation damping for structures in water were published in Russian by
Haskins, in 1957 [l1].

Newman put these relationships into a form readily useable by free
surface hydrodynamicists in 1962 [2]. His work showed the reciprocal re-
lationship between the six generalized excitihg forces on a fixed structure
and the six radiation damping coefficients for rigid body motions in
heave, pitch, roll, surge, sway, and yaw.

In the early 1960's, similar work was being pursued in the field of
acoustics. Working at first independently and later together, Smith .and

Lyon made important discoveries regarding the response of resonators to
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acoustic excitation [3,4]. Of relevance here, it was shown that a single
degree of freedom resonator (such as a piston in a wall) excited by a
broad band sound field would respond in propertion to the ratio of the
sound radiation damping to the total damping of the rescnator. This
appears on the rurface to contradict conventional wisdom regarding the
vibration of mechanical systems. One expects that as damping is increased
response must decrease. This is generally true except in the case that
one chooses to increase radiation damping. An increase in radiation damping
increases the ratio of radiation to total mechanical damping and results
in increased dynamic response. This is easily explained by the principle
of reciprocity. An increase in radiation damping can only be accomplished
if the exciting forces due to incoming waves also increase. It i1s this
increase in exciting force that accounts for the increase in response.
However, the response has an upper bound corresponding to the ratio of
radiation to total damping being 1.0. This early work of Smith and Lyon
opened a new field in sound and vibration known as Statistical Energy
analysis (SEA) [5]. |

Developments in hydrodynamics proceeded quite separately from acous-
tics. 1In 1968, vugts performed a series of model tests, designed to test,
in addition to other objectiveé, the relations of Haskinds as elucidated
by Newman. In a towing tank, wave forces on two-dimensional ship sections
held fixed in place were measured. The same sections were then oscillated
in calm water and the radiated waves were measured. The theoretical re-
lationship between radiation damping coefficients and rigid body exciting
forces were confirmed [6].

Natural medes of many ocean structures are very lightly damped. The
bending modes of fixed jackets and the heave, pitch, and roll modes of
TL?FS are good examples. The significant dynamic response of these natural
modes is often confined to very narrow bands near their natural frequen-
cies. These bands are narrow by comparison to common ocean wave spectra.
The resonant response of an individual structiure mode to ih2 relatively
broadbarnd exciting forces of wind driven ocean waves is analogous to the
response of a resonator excited by a broad band sound field. Might the
results of Smith and Lyon have analogies in the response of structures to

ocean waves?



With Lyon's guidance, in 1975, Vandiver showed, by an analogy to
acoustics, that the resonant response of a structure excited by ocean
waves should also be in proportion to the ratio of radiation to total
damping for that mode [7]. Simple experiments conducted on a nearby,
4~-legged offshore platform with a bending natural period of 1.0 second
suggested that the ratio was approximately 0.1. Schott deduced from ﬁea-
surements conducted by Ruhl on Shell's South Pass 62C structure (T=1.6s)
that the ratio of radiation to total damping was approximately 0.08 [8).

The response prediction problem at that time was not yet completely
formulated, because unlike the omnidirectional nature of a broadband
séund pressure field in a room, ocean waves tend to be highly directional
in response to local weather conditions. In 1980, a response prediction
technique which included the influence of the directional wave spectrum
was presented [9]. In this paper, the Newman relationship between ex-
citing forces and radiation damping for rigid body motions was extended
to include the motions of structures exhibiting elastic deformations. A
model testing procedure was proposed, in which the measured exciting forces
on a model held fixed in place would be used to predict response in a
directionally spread sea. Furthermore, by applying the principle of reci-
procity, model test measurements of exciting forces could .e used to es-
timate modal radiation damping coefficigpts.

In 1979, such a model test was conducted on a TLP. This test was in-
tended to be a demonstration of the feasibility of cbtaining useful data
from a model held fixed in place by load cells. This paper focuses on the
relevant theory and results of that test.

A final note of historical significance: in 1980, field tests were
conducted on a Gulf of Mexico structure to establish the validity of the
response prediction technigue described in reference [92]. The positive

results of this experiment were published in 1982 [10].

Theoretical Considerations

The dynamic response of a lightly damped structural vibration mode
to broad band stationary random excitation is usually dominated by the
response in a narrow band near the natural frequency. In fact, approxi-

mately 80% of the total energy of response is confined to a range of fre-

quency, two half power bandwidths wide centered on the natural frequency.
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From randem vibration considerations the average energy of response in-

cluded in this narrow band of frequencies is given by:

2m SF(wo) (1)
B> = 5 TR
T
where mo = natural frequency
SF(wo) = exciting force spectrum at the natural frequency

total modal damping coefficient

Ry

A remarkablie feature of this result is that the response energy is not
dependent on either the mass or stiffness of the system: only the force
spectrum and damping at the natural freguency really matter. The linear
wave force spectrum for a structural mode can be expressed as a product
of the magnitude squared of the wave amplitude to wave force transfer

function and the directional wave spectrum:

"

2 H
S . (w,8) 5, (@ 9) IT(w,9) | (2)

where sn(w,e) = directional wave spectrum

I'{w,8) = wave amplitude to modal wave force transfer function
for a structure held fixed in place

denotes magnitude of

As a consequence of reciprocity as expressed by Newman [2], the modal

radiation damping coefficient can be expressed as

3 2
w
R, (W) = <|rw.8| > (3)
RAD 2pg3 8
where p = density of water
g 2 = acceleration of gravity
<lr(w,e)| >9 = mean square value of I'(w,8) computed with respect

to 8, for 6=0 to 2T

As shown in reference (9], Equations 1, 2, and 3 can be combined to
produce the following expresssion for the damping controlled mean square

response energy of the mode.
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3 R (w )

4T 0g” RAD o
<E> = —C s {(w) ——————— (4)

571 w03 n o RT(mO)

As expected, the response energy is proportional to the ratio of
the radiation to total damping for the mode. It is also linearly propor-
tional to the point wave amplitude spectrum evaluated at the natural fre-
guency of the mode. This is a direct consequence of the fact that this
eguation results from a linear theory.

A significant property of this equation is that even if the exact
ratic of radiation to total damping is not known, the upper bound value
is 1.0, thus providing an upper bound estimate on response energy, even
if the actual damping is unknown.

One item in the equation is not generally known. It is the quantity
noted as Cl. This factor includes the effects of the structural geometry
and the directional nature of the seas on the wave force spectrum. It is

only necessary to evaluate it at the natural frequency, w, - It is given

by

2 2
/ sn(wo,eylr(mo,s)[ a6

c, = -2 (5)

1 2
5, (w,) < [T (w,,8) >0

The directional wave force spectrum is assumed to be expressible as the
product of the point spectrum and a spreading function valid in the re-
levant narrow band of frequencies near the natural frequency of the mode.
In a design calculation the directional wave spectrum is assumed to be
prescribed. It remains to estimate the directionally dependent wave am-
plitude to wave force transfer function IF(w,B)I. This transfer function
can be measured in a test on a model held fixed in place. Such a test

was conducted at MIT in 1972 on a model of a TLP.

Model Description

The model is shown in Figure 1. It consisted of four large cylindrical
columns connected together by the deck and by small tubular braces. A
typical column is shown in Figure 2. The model was ballasted to float at

its design water line as if the tension elements were in place. The dis-
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FIGURE 1. TLP MODEL
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FIGURE 2. DIMENSIONS of a TYPICAL COLUMN
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placement of the model was 560 pounds (254 kg). The distance between leg
centers was 4.0 feet (1.22 m).

The model was rigidly attached via five load cells to a rigid steel
bridge spanning the towing tank. Three load cells (V1, V2, V3 in Figure
3) oriented vertically were attached to the aeck of the model at the
vertices of an equilateral triangle. The connection points to the model
could be varied in 5° increments up to 45°. The points were at a constant
redius from the center of the deck. Two horizontal cells, orthogonal to
one ancther were attached to -the -center of the deck of the model. These
horizontal cells could rotate with.-the model. fThrough various trigono-
metric relations, these five load cell outputs could be combined to yield
the total rigid body exciting forces in heave, pitch, roll, surge, and
sway. Yaw moment was not measured.

The load cell outputs and the output of the wave staff were sampled
at 50 Hz per channel using a Digital Equipment Corporation MINC 11/03
laboratory computer.

The model was constructed so that the angle of incidence of the waves
could be varied by rotating the model under the bridge in five degree in-
crements from O to 45° incidence. The computer software was written so
a$ to be able to resolve the .igid body exciting forces at all possible
incidence angles. Because of the square shape and twofold symmetry of

_the model, it was not necessary to rotate the model more than 45°. For
example, the pitch moment transfer function for angles of incidence greater
than 45° can be obtained from the roll moment transfer function for incid-

ence angles of less than 45° from the following relationship

|Pitch moment (8)| = |Roll moment (90°-8) | (6)

Model Test Procedures

Exciting forces were measured at ten incidence angles and seven
regular wave frequencies. The model had a nominal scale ratio of 50:1,
so the model wave frequencies were higher by the factor of ¥50  than
prototype wave frequencies and wave neights were 1/50 prototype wave
heights.

For each combination of wave frequency and incidence angle three
wave amplitudes were used to confirm linearity of the wave force transfer

1
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funetion. 1In prototype scale the wave heights varied from 3 to 12 feet
(.9 € 3.7 m).
Table 1 shows the model and corresponding prototype wave periods,

frequencies, and wave lengths.

TABLE 1

MODEL FREQUENCIES AND CORRESFONDING
BROTOTYPE FREQUENCIES, WAVELENGTHS, AND PERIODS

fmodel(Hz) fpro(Hz) wpro(rad/sec) Tpro(sec) kpro(feet)
1.5 .212 1.33 4.71 114
1.131 .160 1.005 6.25 200
1.013 .143 . 900 6.98 250
0.90 .127 .800 7.86 . 316
0.788 111 .700 8.97 © 412
0.675 .0955 . 600 10.48 562
0.50 .0707 .444 14.14 1024

In the planning of this experiment, it was recognized -hat this parti-
éula¥ model was too large for the MIT tank. The tank is 8 feet 4 inches
wide (2.54 m), and the maximum diagonal measurement of the model is in
exgess of s5ix feet (2m). At a 45° wave incidence angle there was less
ERaf 12 inches (.3m) of wall clearance on each side. It was expected, and
late¥ eonfirmed, that for short wave periods cross tank waves generated
around the model might create considerable difficulty, However, since
the objective of the experiment was to prove feasibility, it was felt that
objegtives éould be met.

Anéother problem to be expected with a model which is large compared
6 thé width of the tank is the reflection of waves back toward the wave
make¥. This medel was apﬁrokimately 30 feet (9.1lm) from the wave maker.
Thé wave staff was placed halfway in between. After turning on the wave
maket, data aequisition could commence only after steady state regular
waves werte passing the model. Reliable data acquisition terminated once
substantial standing waves developed between the model and the wave maker.

P5eable data windows ten to twenty seconds in length were achieved.
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The most serious mechanical difficulty encountered in the experiment
resulted from the requirement that the model mounted on load cells must
have natural frequencies considerably higher than the highest wave fre-
quencies to be tested. The design of the support system for this experi-
ment emphasized maximum stiffness. As a result, the lowest natural fre-
quency of the frame, with the 560 pound model attached, in water was
approximately 4Hz. The highest wave frequency used in the test was 1l.5Hz.

Dynamic response of the model was not a problem.

Numerical Predictions

Wave amplitude to wave force transfer functions were measured for
heave, pitch, roll, surge, and sway at seven wave frequencies and ten
angles of incidence. The measured transfer functions were compared to
numerical predictions provided by Ron Neordgren of Shell Development Corp.
The numerical predictions were generated by a computer code known as MOSAS.
MOSAS is a wave force and motion simulation program originally developed
for the prediction of seakeeping behavior of semi-submersibles. It has
heen thoroughly described in reference {11], and therefore shall not be

described in detail here.

Comparison of Experimental Results and Numerical Predictions

A typical data set is presented as the magnitude of a transfer function,
plotted in polar coordinates as a function of wave incidence angle. Each
plot represents one rigid body degree of freedom transfer function at one
wave frequency. Five types of transfer functions were determined at seven
wave frecuencies. Of the thirty-five possible combinations, four are
given as examples in Figures 4 to 6.

The examples shown are the surge force transfer function at proto-
type wave periods of 10.5 and 6.25 seconds and the pitch moment transfer
function at the same wave periodé. A prototype period of 6.25 seconds
corresponds to a wave length exactly equal to the major leg spacing of
200 feet (60.96m). The plots are shown for angles of incidence of 0 to
90% only. Due to the symmetry of the TLP the transfer functions have
mirror images about the G° and 90° axis.

Both the surge and pitch transfer functions at the longer wave period
(10.5 seceonds) show gquite good agreement between prediction and measurement

(Figure 4). This might have been anticipated. The computer prediction is
3
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more accurate for long period waves because diffraction effects are less
important. The model test results are more reliable, because the wall
effect is less troublesome.

On the other hand, the results for the 6.25 second waves show very
poor agreement for angles of incidence greater than 45°. For these tests,
¢ross tank waves were a significant problem. Also, only an approximate
correction for diffraction was made in the numerical predictions. The
pitch moment transfer functions were computed about a point which is at
the center of the platform in the horizontal plane and 2.31 feet (.704m)
above the bottom of the columns (Figure 2).

Radiation Damping

The radiation damping coefficients for rigid body motions may be com-
puted using the data shown in the transfer functions. The surge resonance
of a TLP has such a long pericd (order of 2 minutes in 2000 feet (610m))
that the linear radiation damping is insignificant. This is confirmed by
the fact that second order forces account for the long period drift motions
of the TLP. However, pitch resonances, for example, occur at much shorter
periods and the ratio of radiation to total damping may be very important.

The radiation damping for pitch motions about the moment center shown
in Figure 2 may be computed from experimental data using a discrete form

of Equation 3 as shown below.

3

= dn 1 2
R__.(w) = (=7 [ (w ,iA8 {7)
rad "o 2pg3 n+l i=0 P o

For our experiments A8=5° and n=35. For values of n>17 the symmetry pro-
perties of'Fp(w,e) are invoked. As an example, the pitch radiation damping
coefficient at an oscillation pericd of 6.25 seconds was computed using

the data from Figure 5. Because the wall disturbance was so great, the
computer predicted values were used in place of the measured ones. The

result was

{(T=6.2553)

Read, piteh = 2.36 x 10° (n-m-s) (8)
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To obtain the ratio of radiation to totél damping, the other sources of
damping, coming from the material, viscous hydrodynamic, and foundation
losses must also be estimated. An example of such an estimate is given
in reference [10]. This estimated radiation damping would vary somewhat
depending on the actual mode shape of the pitching motions, which

would depend upon water depth as well as mass distribution on the struc-

ture.

RESPONSE PREDICTION

With estimates of the transfer functions available it is a relatively
simple matter to estimate the damping controlled rescnant response of one
of the structural modes. The computation of the constant C
5 is the key.

1 with Equation
As an example, the computation of the pitch response at a natural
period of 6.25 seconds is presented here for a fully developed Pierson-
Moskowitz sea state.
The worst case would be for unidirectional waves incident on the bow
at 8=0°. For this case, the computation of C

2T | 2
g sn(wo)6(9=0)|Fp(wo,8)[ ae

2 2
sn(wo)<]rp(wo,e)1 > <|rp(wo,e>l >4

1 is quite simplified.

ITpw_,8=0) 2

IT_(w_,0)]2
= -93 o (9)
29" o
3 rad
mO

where 6(0=0) is the delta function at 8=0. The value for IFP(mo,O)I can
————

rad has been previously computed.

be obtained from Figure 6, and R

|tp(w=l.005 rad/s, 6=0)|2 = 2.48B x lOlG.n2
Substitution of the appropriate wvalues yields Cl = 5.7.
For a Pierson-Moskowitz sea corresponding to a wind speed of 40
2
knots {20 m/s), Sn(wo) = .73 m -S.

Substitution of wvalues for C,, wo, and Sn(wo) into Equation (4)

1
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yields an estimate of the response energy in pitch motion in the damping

ccntrolled region about w._.

0
R R
<€> = 9.7 x 10° Z28& - 7.1 x 105 F29 e 1ps (10)
T T

This is the average energy of response of the pitch mode at all freguencies
included in the two half power bandwidth region centered on Wy This
average energy can be interpreted as the average maximum strain energy or
kinetic energy, and can therefore be used to compute directly mean sguare
values of the deflections of the tension elements or rotational velocities
of the structure. Furthermore, if the wave forces are represented by a
stationary Gaussian random process, then the response is also stationary
and Gaussian and knowledge of the mean square response is all that is re-
quired to compute the statistics of response peaks according to the Ray-
leigh probability distribution.

This example is overly conservative due to the unidirectional nature
of the waves. If a cosine squared spreading function was introduced in
Equation 5 and the result was numerically evaluated, C1 would reduce to
3.47. This results in a 39% reduction in predicted response energy. With
additional wave spreading Cl tends to 1.0.

Until one has accurate information on the ratio Rrad/RT a conservative
upper bound value of 1.0 may be used.

This example described simple pitch rotations about a fixed point.

For an actual TLP the pitch mode will be more complex and refinements in
the measurements and predictions would be necessary. The theory as pre-

sented is appropriate.

Conclusions

The direct measurement of linear wave forces on a mcdel held fixed
in place may be used to predict the dynamic response of a natural mode of
a TLP. The effects of directional wave spreading may be easily taken into
account. The relation between radiation damping and exciting forces has
been shown to be a key link in the understanding of the response prediction

problem,
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MEASUREMENTS OF THE VORTEX EXCITED
STRUMMING VIBRATIONS OF MARINE CABLES

1. K. Vandiver, Massachusetts Institute of Technology, Cambridge, MA 02139

O. M. Griffin, Naval Research Laboratory, Washington, DC 20375

ABSTRACT

Field experiments were conducted during the summer of 1981 to study the strumming
vibrations of marine cables. One of the objectives of the experiments was to validate and. if
necessary, to provide a data base for modifying the computer code NATFREQ. This code was
developed at the California Institute of Technology for the Naval Civil Engineering Laboratory
(NCEL) 1o calcuiate the natural frequencies and mode shapes of 1aut cables with large numbers
of attached discrete masses. Time histories of the measured hydrodynamic drag coefficients,
current speeds, and cable strumming responses are presented here for selected test runs with a
bare cable and for a cabie with attacked masses. Also, a comparison is made between

NATFREQ- predicted and measured naturz! frequencies and mode shapes lor the test cable.

INTRODUCTION

The vortex-excited oscillations of marine cabies, commonly termed strumming, result in
early fatigue, larger hydrodynamic forces and amplified flow noise, 2and sometimes lead to struc-
tural damage and eventually to costly failures. Flow-excited oscillations very often are a criti-
cal factor in the design of underwater cable arrays, mooring systemns, drilling risers, and
offshore platforms, since the components of these complex structures usually have bluff
cylindrical shapes which are conducive to vortex shedding when flowing water is incident upon
them. An understanding of the basic nature of vortex-excited oscillations is an important con-
sideration in the reliable and economical design and operation of offshore structures and cable
systems. The resonant strumming response of bare cabies is discussed in detail in a recent
NCEL/NRL report (1), The suppression of strumming vibrations is dealt with in a separate

NCEL-sponsored report (2),

As part of the overall NCEL cable dynamics research program, a series of laboratory and
fietd experiments have been conducted 10 investigate the effects of attached masses and sensor
housings {discrete or lumped masses} on the overall cable svstem response. Towing channel
experiments were conducted with a "strumming rig” developed for the NCEL cable dynamics

program and the test findings recently were reporied (3). A iest program was conducted during



the summer of 1981 10 investigate further the strumming vibrations of marine cables in a con-
trolied field environment. The experiments were funded by NCEL, the USGS and industry
sponsots, planned by NRL and MIT, énd conducted at the field site by MIT. A primary objec-
tive of the test program was 1o acquire data 1o validate and, if necessary, to provide a basis for
modifying the NCEL-sponsored computer code NATFREQ (4). This code was developed in
order to calculate the natural frequencies and mode shapes of taut marine cables with large

numbers of attached masses.

The purpose of this paper is 1o describe the feld test program and to present some initial
results from it. Also, calculations using the NATFREQ code have been made at NRL for all of
the field test runs and a comparison is made with selected test data that have been analvzed in
sufficient dewil. Time histories of the measured hvdrodynamic drag coefficients, current
speeds, and cable strumming responses are presented and discussed. Predictions are made of
the hydrodynamic drag on a bare cable and these predictions are compared with the field test

data for selecied conditions when the cable was observed to be resonantly strumming.
THE TEST SITE AND INSTRUMENTATION

The Test Site

The site chosen for the experiment was 2 sandbar located at the mouth of Helbrook Cove
near Castine, Maine. This was the same site used for previous experiments during the mid-
1970°s by Vandiver and Maze! (5,6). At low tide the sancbar was exposed allowing easy aceess
to the test equipment, while at high tide it was covered by about ten feet of water. The test
section was oriented normal to the direction of the current which varied from 0 to 2.4 {i/s over

the tidal cycle with only small spatial variation over the test section fength at any given

moment.

The data acquisition station for the experiment was the R/V Edgerron which was chartered
from the MIT Sea Grant Program. The Edgerton was moored for the duration of the experi-
ment approximately 300 feet from the sandbar and connected to the instrumenis on the sand-

bar by umbilicals.

Prior to the data acquisition phase of the experiment, several days were needed to prepare
the site. A foundation for the experiment was ne.ede'd to anchor the supports which were 10
hold the ends of the test cylinders. To accomplish this, six 4.5 inch diameter sieel pipes were
water jetled into the sandbar utilizing the fire pump aboard the Edgerion. These six pipes were
made of two five foot sections joined by ¢ upiings so that the overall length of eackh was ten

feet. In addition. one two-inch diameter by six oot iong steel pipe was jetled into the sandbar
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to be used as a current meter mount. Finally, a section of angle iron was clamped to the pipe
used 10 support the drag measuring mechanism and attached to another support pipe 10 prevent
any rolation of the drag mechanism mount. Figure 1 shows a schematic diagram of the sel-up

of the experiment.

Test Instrumentation

Drag measurement system. The drag measurement system was located at the west end of
the cable svstem as shown, in Figure 1. The device was welded onto & support pipe 2.5 feer
above the mud line. The mean drag force at the termination of the cable was used to generate
a moment about a freely rotating vertical shaft located 2 few inches bevond the :ermination
point. The bearings supporting the shaft carried the entire tension lcad without preventing
retation. The moment was balanced by a load cell which restrained a lever arm connected to
the shaft (see Figure 2). From the known level-arm lengths and the load cell measurements
the mean drag force on one half of the cable could be determined. The load cel signal was car-

ried by wires in the cable and umbilical to the Edgerton where it was conditioned and recorded.

Current measurement sysiem. The current was measured by a Neil Brown Instrument Sys-
tems DRCM-2 Acoustic Current Meter located 12.5 ft from the west end of the 1est cable and
Z ft upstream. It was set so that it determined both normal and tangential components of the
current at the level of the test cable. Signals from the current meter traveied through umbiii-
cals to the Edgerton where they were monitored and recorded. In addition. a current meter
traverse was made using an Endeco current meter to determine any spalial variations in current
along the est section. The current was found to be spatially uniform to within 3.0 percent

from end to end for all but the lowest current speeds (V < 0.5 fi/s).

Tension measurement system. The tension measuring and adjusting system was ioca_ted at
the east end of the experimental test set up (see Figure 1). Extensions were made to the two
inner water jetted posts at this end. As shown in the diagram, a five foot extension was made
to the center post and a three foot exiension was made to the innermost post. This three foot
extension was different from the rest in that its attachment to the jetied pipe at the mudline
was a pin connection as compared to the standard pipe couplings used on the other extensions.
Cnto this pivoting pest, a hydraulic cylinder was mounted 2.5 feet above the mudline. The test
czbie in the experiments was connected at one end to this hydraulic cylinder and at the other
¢nd 1o the drag measuring device. To the back of the hydraulic cvlinder one end of 2 Sensotec

Model RM In-Line load cell was connected. The other end of the cell was attached via a cable
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to the center post. The output from the tension joad cell ‘was transmitted through the umbili-
cals to the Edgerton whare it was monitored. Hvdrzulic hose ran from 2 pump on the Edrerion
to the hydraulic cylinder so that the tension could be changed as desired. Additional details

concerning the test insirumentation are given by McGlothiin (7).

Data Acquisition Systems

During the experiment, datz taken from the instruments on the sandbar were recorded in
two ways. First, analog sikgnals from the fourieen accelerometers in the cable as well as current
and drag were digitized, at 30.0 Hz per channel, onto floppy disks using a Digital Equipment
MINC-23 Computer. Second, analog signals from the drag cell, current meter, and six
accelerometers were recorded by a Hewlett-Packard 3968 A Recorder onto eight-track tape. The
disks were limited to record lengths of eight and one half minutes and were used to take data
several times during each two znd one half hour data acquisition period. A Hewlett-Packard
3582A Spectrum Analyzer was set up to- monitor the real time outputs of the accelerometers.
The eight-track tape was used to provide a continuous record of the complete two and one half

hour data cycle.

THE TEST CABLE SYSTEM

The Cable

A 75 foot long composite cable was developed specifically for the experiments that were
conducted in the summer of 1981. Figure 3 shows a cross-section of the test cable. The outer
sheath for this cable was a 75 foot long piece of clear flexible PVC tubing, which was 1.25 in.
0.D. by 1.0 in. LD. Three 0.125 in. stainless steel cables ran through the tubing and served as
the tension carrving members. A cylindrical piece of 0.5 in. O.D. neoprene rubber was used to
keep the suainless steel cables spaced 120 degrees apart. The neoprene rubber spacer was con-
tinuous along the ]enéth except at seven positions where biaxial pairs of acceleromeiers were
placed. Starting at the east end, these positions were at L/8, L/6, L/4. 2L/S, L/2, 5L/8. and
3L/4. These accelerometers were used to measure the response of the cable as it was excited
by the voriex shedding. The accelerometers were Supdstrand Mini-Pal Model 2180 Servo
Accelerometers which were sensitive to the direction of grévity. The biaxial pairing of these
accelerometers made it possible 1o determine their orientation and 1o extract real vertical and

horizontal accelerations of the cable at the seven locations.

Three bundles of ten wires each ran along the sides of the necprene spacer to provide

power and signal connections 1o the accelerometars =nd also to provide power and sigrial con-



nections to the drag measuring sysiem. Finaily, an Emerson and Cuming flexible EPOXY was
used to fili the voids in the cable and make it watertight. The weight per unit tength of this
composite cable was 0.77 Ib/ft in air.

The Attached Masses

In some experiments, lumped masses were fastened to the bare cable to simulate the
effects of sensor housings and other attached bodies. The lumped masses were made of
cylindrical PVC stock and each was 12.0 in. long and of 3.5 in. diameter. A 1.25 in. hole was
drilled through the center of each lumped mass so that the cable could pass through. In addi-
tion, four 0.625 in. holes were drilled symmetrically around this 1.25 in. center hole so that
copper tubes filled with leac_i could be inserted to change the mass of the lumps. In the field, it
was difficult to force the cable through the holes drilled in the PVC so the masses were split in
half along the length of their axes. The masses were then placed on the cabje in haives and
heid together by hose clamps. Different tests were run by varying the number and location of

lumped masses and by changing the mass of the attachments.
MEASUREMENTS OF CABLE STRUMMING

Bare Cable

Several test runs were conducted with the bare cable during the experiments to provide a
basis for comparison to the cable with attached masses. A 300 second time history for one bare
cable test run is shown in Figure 4. The cable was resonantly strumming at 1.9 Hz in the third
mode normal to the current and non-resonantly vibrating in the fifth mode in line with the flow
at 3.8 Hz. The vertical and horizontal RMS displacement amplitudes were derived from the
time records of the accelerometer pair at a location L/6 along the cable. For the third mode
this location corresponds to an antinode of the cable vibration. The fifth mode amplitudes at
this location are one-half the antinode maximum. The vertical displacement amplitude is
approximately £0.6 10 0.7 diameters (RMS} over the length of the record. The tension in this
test was 360 pounds. The damping ratio measured in air for the third mode was 0.15 percent.

The reduced damping (1) for this cable was {,/u = 27 St%k, = 0.06.

The average drag force coefficient on the cable is approximately C= 3.2 this is consider-
ably greater than the drag coeffictent Cpp = 1.2 that would be expeciad if the cable were res-
trained from oscillating under these flow conditions. The drag coefficient on the strumnrming

ceble was predicied with the equation
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Cp.ave = Cpo [1 + 1.043 (2 Fys/ DI°),

which is derived from the original equation proposed by Skop, Griffin and Ramberg (8,9).
Here Cpp is the stationary cable drag coefficient. This equation lakes into account the modal
distribution in displacement amplitude along the cabie. ?RMS/D is the root-mean-square
antinode displacement in diameters. The strumming drag coefficient predicted using this equa-
lion is ip the range Cp = 2.4 10 2.6 as shown in Figure 4: this is approximately 15 percent
below the drag force coefficient measured at the field site. The results of these field test runs
ciearly verify the large amplification in hydrodvnamic drag due to sirumming that has been

measured previously in iaboratory-scale experiments (1.8,9).

Cable with Attached Masses

Ten test runs were conducted at the field site with different combinations of locations,
numbers, and masses of the attached cylindrical Jumps. Tests were run in air and in water for
each of the ten combinations. The in-air tests provided measures of the structural damping
from vibration decay tests and of the natural frequencies and mode shapes. An exarmple taken
from one of the more complex test runs is shown in Figure 5. Six masses were attached to the
cable: two light cylinders (m = 4.41b_ or 2 kg) at x = L/8 and L/2: and four heavy cvlinders
{m = 10.0 Ib,, or 4.5 kg) at x.= L/3, 5L/8, 3L/4 and 7L/8. The RMS strumming response
data shown for a two and one half hour time period in Figure 5 were recorded at x = 3L/4,

where both one of the attached masses and an accelerometer pair were focated.

Several important results of the experiments can be observed from Figure 5. The vibra-
tion level over the time of the test run was approximately 0.3 diameters (RMS}, indicating that
the attached mass did not act as a node of the cable system vibration pattern. The drag
coefficient of the sysiem was Cp = 2.4 to 3.2 which again represented a substantial
ampiification from the. stationary cable value of Cpp = 1.2. The relative contributions have not
vet been determined. Several segments of the time history in Figure 5 exhibit nearly constant
drag and vertical RMS response levels; this is indicative of resonan: Jock-on between the cable
vibrations and the current-induced voriex shedding. A more detailed assessment of the cable
svstem strumming data is underway 1o provide further understanding of the sirumming

phenomenon and additional guidance for marine cable systemn designers.

NATFREQ PREDICTIONS

The natural frequencies and mode shapes for tn2 8277 t2et -une voro culoulaied ul NEL

with the NCEL-developed computer code NATFREQ (4}, This code was developed to calcu-
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late the properties of taut cables with large numbers of attached discrete masses. The equations
of motion are solved by an iterative technique which allows the accurate calculation of
extremely high mode numbers. It is possible with NATFREQ also to calculate the strumming
drag on the cable according to the method of Skop, Griffin and Ramberg (8.9), exclusive of the

drag due 10 anv of the attached masses.

Computations were made for all of the MIT test runs. both in air and in water. The first
twelve natural frequencies and mode shapes were computed, though tvpicallvy only the first six
cabie strumming modes were excited by the currents at the iest site. An exampie of the mode
shapes is given in Figure 6. For this case the cable was fittad with seven attached 4.4 b,
lumps. The lumps were equally spaced at intervals of the cable length divided by eight. That is.

at distances from one end specified by NL/§. for N = 1 10 7.

A pariial tabulation of catculated and measured natural frequencies for the same distribu-
tion of attached masses is given in Table 1. The measurements were obtained from vibration
decay tests conducted in air. Typical damping ratios were 0.2 to 0.5 percent of the critical damp-
ing. Excellent agreement was obtained between the measured and computed frequencies for
several of the natural cable modes. These resuits give a first indication of the applicability of
NATFREQ to the calculation of the flow-induced vibrations of full-scale marine cable systems.

Additional comparisons between the field measurements and the code predictions are underway.

SUMMARY AND CONCLUDING REMARKS

A test program has been conducted to investigate the effects of attached masses and sen-
sor housings on the strumming response of marine cable systems. The tests were conducted
during the summer of 1981 to investigate the strumming response of marine cabies in a welil-
controlled field environment, This paper describes the test set-up, the instrumentation used,

and some of the results obtained at the site,

Both an instrumenied bare cable and the same cable with varying numbers and types of
attached masses were employed in the experiments. The hvdrodivnamic drag coefficieni for the
bare cable was measured over extended time periods of up 1o two and one half hours. The
measured average drag force coefficient was as large as Cp = 3.2. as compared to Cpr = 1.2
for a non-strumming bare cable under the same flow conditions. Vibrations were excited in the

first six strumming modes of the cable at levels up 10 =0.6 10 0.7 diameters (RMS}.
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Table I — Measured and NATFREQ-Predictad
Natural Frequencies (In Air)

Seven 4.4 |b,, Attached Discrete Masses at:
NL/8, for N = 11to7.

Natural Frequency, f,/Hz

Mode Number | Predictad f Measured !
I 0.759 —_—

2 1.513 1 1.340 !

3 2.237 —— l

| e soc |

J 4 2.983 3.066 '

| s 675 | ——o |

| 6 [ R N

! 7 4.787 5.040 !

! 8 170 | o

Cable specifications:

Length, L = 75 fi; Diameier, D = 1.23in..
Specific Gravity, $G = 1.41;
Tension = 500 Ib.

The cable with attached masses also underwent large-amplitude strumming vibrations. In
one test described in detail vibration levels of up to +0.3 diameters (RMS) were recorded at
the location of one of six attached masses over a two and one haf hour time pericd. The
measured drag force coefficient on the cable with the six masses was in the range Cp = 2.4 10

3.2 over the same time period.

One objective of the field test program was to acquire data to validate and, if necessary. to
provide a basis for modifving the NCEL-developed computer code NATFREQ (4}, An inital
comparison has been made of the NATFREQ-predicted and the measured natural frequencies
of the cable with attached masses. Excellent agreement has been obtained and further

comparisons are underway.
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ABSTRACT

The Maximum Entropy Method (MEM) is a nonlinear

data adaptive method of spectral analysis which is
capable of generating a higher resolution spectral
estimate from shorter data records than conventional

Fast Fourier Transform (FFT) methods. The MEM method
has proved to be useful in the calculation of natural
frequency and damping ratio estimates and their vari-
ances from ambient platform acceleration measurements

This paper presents the results of an extension of the

single channel MEM to multichannel applications. A
transfer function estimate using the multichannel MEM
method of spectral analysis was used in mode shape

identification for an Amoco offshore caisson platform
located in 89 feet of water in the Gulf of Mexico.
Transfer function estimates obtained from multichannel
spectral analysis are superior to those obtained using
autospectral methods in terms of their relative insen-
sitivity to input and output noise. Comparison of
these relative acceieration magnitudes with the rela-
tive displacement amplitudes obtained from a finite
element model of the caisson ptatform gave reasonable

agreement. Thus, this technique can be a useful tool
{in conjunction with the cross-spectral estimates of
magnitude, phase, and coherence) in mode shape iden-

tification for offshore platforms.

INTRODUCTION

As the petroleum industry moves into deeper
waters to tap new reserves of oil and gas, the cost
and size of the offshore platforms increases consider-

ably. Substantial interest has been generated in
methods of detecting structural damage by measuring
shifts in natural frequencies from undamaged condi-
ticns [1,2,37. Lack af reproducibility in
determination of the natural frequencies of modes
higher than the fundamentals has led researchers to
conclude that detection of damage by above-waterline
measurement of acceleraticn response to environmental
loads is not feasible. One of the fundamenta?l! prob-

lems is that non-failure related sources of change are

&1

so large as to obscure changes in natural frequency
which are caused by significant levels of damage.

These problems have led researchers to consider
alternate measurement techniques, including (1)
below-waterline measurement of global and tocal modes
and (2) forced excitation with shakers and impulse
hammers [4]. Rather than simple measurement of
changes 1in natural frequencies; determination of mode

shapes and transfer functions are being attempted
[5,6]. The success of these various techniques will
depend in part upon the development of powerful dig-

ital signal processing tools.

Design verification 1s another aspect of struc-
tural dynamics that can benefit from advances in sig-
nal processing. For the design of safe
fatigue-resistant structures in ever more hostile
environments, it is necessary to verify by accurate
measurement the adequacy of present design methods and
assumptions. Predicted and measured values of natural
frequencies, damping ratios, and mede shapes are but a
few of the values which should be compared. Where
discrepancies occur, improvemenis can be made fer
future designs.

The first spectral estimator to be used was the
periodogram. The periodogram and its variations are
methods which cperate directly on the data by Fourier

transforming to obtain the spectral estimates. In
1958 Blackman and Tukey [7] introduced their
autocorrelative method which involves the Fourier

transform of the windowed autocorrelation function
estimate. It is a moving average (MA) or all zero
method which suffers from a severe '"bias wvs.
variance" tradeoff. Resolution is lost due to (1) the
finite record length of the autocorretation function
estimate (assumed zero beyond known lag products) and

{2) the windowing operation itself. In 1965 Cooley
and Tukey sparked a revival of the Fast Fourier Trans-

form (FFT) which had been known for years but was not
practical wuntil the advent of the high speed digital
computer. The direct method of calculating spectral
estimates invelving magnitude squaring of the trans-
form of  windowed data records became popular.
Unfortunately, this method unreasonably assumes that




the data s zerc outside the selected number of lags
and repeats ftself periodically.

In 1967 Burg [8] introduced the concept of the

Maximum Entropy Method (MEM) of auto-spectral
analysis. Entropy is a measure of the average infor-
mation content contained in a signal. Maximizing

therefore maximizes the information transmit-
signal. MEM is one of the family of
data-adaptive methods of spectral analysis
capable of generating a higher resolution
astimate from shorter data records than con-
Fast Fourier Transform (FFT) methods. This
use shorter data records can be an impor-
where (1) stationarity, (2)
cotlection, and/or (3) computer
and cost are a problem. Because MEM
is data-adaptive, it does not suffer from the severe
"bias vs. variance" tradeaff due to finite record
Tength requirements of conventional methods. When
calculating spectral estimates at ane frequency, it is
able to adjust itself toc be least disturbed by power
at neighboring frequencies.

entropy
ted in a
nonlinear,
which are
spectral
ventional
anflity to
tant consideration
logistics of data
processing time

the MEM
geophysics,

Researchers have successfully applied
method to such diverse fields as
neurophysics, and radar imagery. Campbell [39] applied
the single channel version of MEM to the dual problem
of natural frequency and damping ratio estimation of
offshore platforms. He "“was able to more accurately
evaluate these two parameters as well as place 95%
confidence 1imits on these estimates. The multichan-
nel MEM method of spectral analysis is appliied in this
paper to the problem of mode shape and transfer func-
tion estimation in the hope that both structural
monitoring and design verification technologies may
henefit.

MULTICHANNEL MAXIMUM ENTROPY METHOD OF SPECTRAL ANALY-
SIS

In. order to assist understanding of the multi-
channel MEM algorithm, a brief review of the single
channel MEM model as a prediction error (PE) filter

will be presented. An error series, e{n), is defined
as the difference between the desired or true signal,
d(n), and the actual or predicted signal, y(n). The
desired value 1is chosen as the input signal advanced
one time unit ahead. The actual signal represents
past values of the input signal. These past or pravi-
ous values of the time series are used to predict the
next value (hence the prediction error terminology).
According to least squares theory, a mean square error

or error power (ie. variance faor zero mean process),
P(L), is defined as the expected value of the square
of the error signal. The energy contained in this

error power must be minimized in such a way that the
input signal is whitened {(or the output becomes uncor-
related} as the filter order is increased [10]. The
Normal or Wiener-Levinson equations are obtained as a
result of this minimization and are given by

(R] {A} = {P} ........................... (1)
where:
[R] = (L+1)x(L+1) matrix of autocorrelation

coefficients, 0 to 1 lags

{A} (L+1)x1 column vectar of prediction error
filter coefficients

{P} = (L+1)x1 column vectar of prediction errors

it
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The L+1 Normal egquaticns are then solved by ti=»
Levinson-Durbin recursion to obtain the PE filter
coefficients, A. This algorithm takes advantage of

the special Toepliitz symmetry of the Normal equatic::
whereby all diagonal values in the correlation matrix
are the same. The MEM spectral estimate, Sx, definc.

between the Nyquist frequency, fny, is then given by

£

SX(F) [ACE Sw(f)  -faysfsfry  ...(2)
20%(L) a
T

1= T Am exp(-jZﬂfth'z
m=1

where g2(L) or Sw(f)/24 is the prediction error ur
white noise variance and the denominator is the magni-
tude squared of the Fourier transform of the PE filter
coefficients. The A is the time increment in seconds
between sampled data points. Note that the one in the
denominator is actually the A{D0) PE filter coefficient
term.

Thus, the single channel MEM filter can be writ-
ten in a form that structural Jdynamicists are
familiar. That is, the MEM spectral estimate, Sx(f),

{ie. output spectrum} is the product of the prediction
error spectrum, Sw(f), (ie. input spectrum) and the
magnitude of the transfer function of the PE filter
squared, A(f). The MEM spectral estimate is obtained
by (1) <calculating the PE filter coefficients out to
the desired filter order of length L, (2) calculating
the PE due to a white noise signal at filter order (,
(3) taking the magnitude squared of the Fourier trans-
form of the PE coefficients, and {4) performing the
operations indicated in £q. &.

For the muitichannel MEM algorithm, the development is
analogous to the single channel case. The expected
mean-square vaiues of forward and backward errors of
length M (M < L} are minimized for the optimum filter.
As a result, the Normal equations for the pxp (p=2 for
two-channe! case) forward filter coefficients, CF,
(analogous to the PE filter coefficifents of the single
channel case) are given by

[RF] {CF(M,m)} =

where;
[RF]= forward R-matrix, Toeplitz,
T square block submatrices
V{ = forward power matrix, [P(M) 0 0...0Q]
m° = coefficient number
The R4 element or 2x2 submatrix of the RF matrix for a
lag of 4 for the two-channel case is

{R4} = [R11(4) R12(AF] .ol (4)
R21(4) R22(4)
where the diagonals are the autocorrelations and the

off-diagonals are the cross-correlations between chan-
nels 1 and 2.

The single-sided multichannel MEM spectral estimate
matrix 1is a function of the Fourier transform of the
forward filter coefficient matrix and is given by

G(F) = 2alCFY(1/2)1" P(MY [CF (/)] .. (

[$4]
(W)




where z
satisfies
the filter

exp(-j2mfa). Since the forward power, P,
the condition that it is greater than zero,

coefficient matrices are nonsingular and
invertible. Equatien 5 reduces to Eq. 2 for the sin-
gle channel case if matrices are replaced by vectors
and vectors by scalars. The inverse matrix operations
become divisions and the product of the filter coeffi-
¢cients with their complex conjugates gives the
magnitude squared as before.

The forward filter coefficient matrix, CF, is
calculated using a correlation extension method based
on the Rissanemn recursion. It invelves the triangular
decomposition of the R-matrix into a diagonal form
from which psuedo-forward filter coefficients are cal-
culated. A savings 1in computer storage is realized.
The interested reader is referred to the papers by
Strand [11] and Rissanen [12] for more details on this
method.

MULTICHANNEL SPECTRAL ESTIMATION

The primary emphasis of this paper is in the
application of multichannel spectra?l estimates to mode
shape identification. In mode shape analysis, the
resonant frequencies of the platform are first identi-

fied and then the order and shape of the normal modes
can be determined. The more transducers
(accelerometers) used, the easier the task of identi-

fying the modes, especially the higher modes.

Normally, multichannel spectral amalysis esti-
mates include only autospectra and cross-spectral mag-
nitude, phase, and coherence estimates. The transfer
function estimate can be used to give relative dis-
placements between accelerometer locations. Since, as

we shall see, the cross-spectral transfer function
estimate tends to be an unbiased estimate in compar-
ison to autospectral estimates; it is a particularly

useful guantity in mode shape identification.

The autospectral density and the cross-spectral
magnitude estimates reveal peaks which may be due to
either normal modes of the platform, machine noise, or
excitation peaks. They are used to locate natural
frequencies and half-power damping ratio estimates
The autospectra are real and non-negative. The
one~sided cross-spectrum is given by

Gxy(f) ‘ny(f)’ exp{-jfxy(f)) 0=f<oo..{6)

where the magnitude and the phase are defined as

[Bxy()] SQRT [Lxy?(f) + Qxy?(f)] 0sf<co..(7)

Oxy(f)

ARCTAN [Qxy(f) / Cxy(f)] O0sf<oo..(8)

The magnitude
a real-valued
ing between

is real-valued and even and the phase is
and odd function of frequency f. Coupl-
modes can cause the phase values to be
other than zero or 180 degrees. The coincident or
co-spectra density function, Cxy(f), is a real-valued
even function of frequency f. The quadrature spectral
density function, Quxy{f), is a real-valued odd func-

tion and 1is shifted 90 degrees from the co-spectra
estimate.

The cocherence squared (or coherence, if the
square root is taken) is a normalized cross-spectrum
defined by
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Yay(f) = Gry2(F) / [Gxx(f) * Gyy(f)] (9)
It is a measure of the fraction or portion of one sig-
nal which is due to the other. It satisfies the ine-
quality 0 <Y2xy(f) < 1. When it has a value of zero,
the two channels are said to be incoherent or uncorre-
lated at the particular freguency. When the coherence
is zero for all frequencies, the two chapnels are sta-
tistically independent. When the coherence equals
unity at a particular frequency, the two channels are
fully coherent, correiated, or dependent. Extraneous
ngise in the measurement will cause the coherence val-
ue to be less than unity. The predicted modal
deflections will be underpredicted if the coherence is
much less than unity.

For an ideal, causal, stable, linear physical
system; the measured output or response, y(i), is
related to the measured input or excitation, x(t), by

the convolution or superposition integral

L
yit) =J' h(T) x(t - 7)dT ............ (10}
0
where h( T ) is the unit impulse response. The corre-

sponding
transfer
H(f}, is

frequency domain expression in terms of the
function or frequency response function,

Y(f) H{f)Y X(f)

The single-sided auto
the transfer function are

and cross-spectra in terms of

2 )
Gyy(f) = [H(FA Gxx(F) ... .. ...l (12)
Gry(f) =  H{f) Gxx(f)  ........... .. ... (13)
Consider a system with input, m{t), and output,

n{t), noise terms related to the true input, u(t), and
true output, v(t), signals by

x(t) = ou(ty +mlt) e (14
y(t) = w(t) + n(t) ... (1%)
Thus, x(t) and y(t) are the measured values of input
and output respectively. The noise terms are assumed

to be uncorrelated with the true signals and with each

other if the cross-spectral terms are zero. After
some manipulations, the transfer function estimates
for the autospectral, Ha{f), and the cross-spectral,

Hec(f), derivations are found to be

IHaF = *Hf [? + Gnn/va:] ............... (16}
1 + Gmm/Guu
|Hcf = I B (17)

' [rt]

+ Gmm/Guu

where H is the true transfer function. Thus, regard-
less of the amount of input naise; if output noise is
present, the autospectral derivation for the transfer
function estimate will aiways give a biased estimate
of the true transfer function. The cross-spectral
derivation, however, will give an unbiased estimate of
the true value when the input noise satisfies the ine-
quality




Gmm << Guu

regardless of the amount of output noise, Gnn. There-

fore, the cross-spectral method of calculating the
transfer function estimate is always superior to the
estimate calculated using the autospectra whenever

independent noise is present [13].

The transfer function estimate is defined as

Hxy(f) = Gxy(f) / Gxx(f)} 0=f<0 ...... (19)

= Hr(f) - j Hi(f)
where Gxx(f) s considered to be the input signal
whether or not it actually is an excitation. Analo-
gous to the cross-spectral estimate, the transfer
function 1s composed of (1) & component, Hr(f), which

is a real-valued even function of fregquency f; and (2)
a component, Hi{(f), which is a real-valued odd func-

tion. It can be defiped in terms of a magnitude {ie.
gain), Hxy(f) , and phase, ¢ xy(f). These must satis-
fy

Hxy(F) = [Hxy(f) exp(-idxy(f))  0xf<oo..(20)
where:

lHxy(f) = lGxy(f) / Gxx(f)  Osf<co.....(21)

Pxy(f) =  ARCTAN [Hi(f) / Hr(f)1 ....... (22}

= fxy(f)

Thus, the phase, oOxy(f), of the transfer function
astimate is identical to the ©phase of the

cross-spectral estimate @Axy(T).

PERFCRMANCE OF MULTICHANNEL MEM MODE SHAPE ESTIMATOR
ON OFFSHORE CATSSOM PLATFORM

In order to ascertain the multichannel MEM algo-
rithm's ability to generate realistic "mode shapes" of
a structure, a comparison of relative acceleration
magnitudes obtained using MEM transfer function esti-
mates was made with relative displacement amplitudes
ohtained from a finite element model. An offshore
caisson production platform Tlocated in 89 feet of
water in the Gulf Of Mexico operated by Amocc was used
for this comparison. It consists of a single, verti-
cal cylindrical caisson which varies in diameter from
7 ft at the mudline to 4 ft at the MLW. Figure 1 is a
three-dimensional view of the structure. It is 265 ft
overall; extending 100 ft below the mudline, 89 ft
through the water column, and 76 ft above the surface.
It supperts three decks and a boat landing, The heli-
copter deck 1is 76 ft above the water, the production
deck is 57 ft and the wellhead deck is 40 ft. Addi-
tional detajls on this platform are contained in a
companion paper by Cook [14]. This platform is an
ideal structure for estimating cross-spectral esti-
mates because of (1) its symmetry, (2) lack of
interference from neighboring legs, and (3) absence of
drilling activity and Targe unaccountable deck loads.

The instrumentation for this series of tests con-
sisted of four accelerometers and a Tandberg 4-channel
anaiog (FM) tape recorder. The accelerometers were
Endevco QA 116-16 force balance type. They can meas-
ure up to * 1 g, resolve down to 107° g's, and have a
sensitivity of 1 volt per g. The Tandberg Model 100
tape
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recorder uses standard 1/4 inch tape and records | of

simuitaneously on four channels. The amplifier gain
was selected to give an accelerometer output of 100
volts per g. Data was recorded at 1-7/8 ips.

In order to measure the flexural mode shapes -f
the platform, four accelerometers oriented 1in a
northerly direction were placed in the same vertical
plane running through the platform centerline. An
anemometer was used to measure a wind speed and direc-
tion of 20 knots from ENE. Visual observatiocn
ascertained a sea state of 5 to 8 ft.

A sampling rate of 6.4 Hz (0.16 sec interval) was
used in the data reduction. A total ef 80 minuszs
(4800 sec,
Of this amount, 29696 data points (58 segments of 512
points each) were used in calculating the correlation
function estimates to lag lengths of 512 points or 80
seconds. A preview of the analog data indicated that
no over-ranges occurred. The jag length of 512 Jags
was chosen as an appropriate tradeoff between reseol-
ution and variance. An "averlap and save" technique
was used to calculate the correlation function esti-
mates.

In order to compare the multichannel MEM method
of spectral analysis to conventional correlative meth-
eds, a comparison with the Blackman-Tukey method (BTM)
was made. A parameter study on the effects of differ-
ent window shapes (ie. Boxcar, Bartlett, Hanning, and
Parzen) and durations (ie. 128, 256, and 512 lags) on
the BTM method indicated that only the Hanning window
with a lag ltength of at least 256 lags is capable of
giving satisfactory “bias vs. variance" tradeoff with-
out severe sidelobe leakage. Akaike's  Fina?l
Prediction Error (FPE) model order criterion [6,11}]
indicated an optimum value of 80 lags for the MEM
method, Thus, a window duration {for the BTM) or a
model order (for the MEM) of 80 was selected. {ompar-
isons of the multichannel cross-spectral magnitude,
phase, and coherence sguared estimates were made. For
the sake of brevity, only the cross-spectral magnitude
estimates are presentsd here. Figures 2 and 3 are
for the 8TM and MEM methods respectively. The effect
of sidelobe 1leakage on the BTM magnitude estimate is
clearly seen in Figure 2.

The multichannel MEM methed gives an improved
estimate over the conventional Blackman-Tukey spectral
analysis method. One of the reasons why the BTM meth-
od gave such good comparative results (especially at
large. tags) is due te the large amount of data proc-
essed. The real time and cost saving of the MEM
method dis in its ability to calculate spectral esti-
mates using only small amounts of data with low model
orders or filter lengths. From the parameter study,
we
results for a window duration of 256 lags or greater;
but this would have required correspondingly more com-
puter time and cost. Also, the stationarity problem,
due to varying
ularly important here.

The helicopter and wellhead deck accelerometers
are presented as an example of the mode shape iden-
tification process using the multichannel MEM transfer
function estimates, Figures 3 = 5 show the
cross-spectral estimates of magnitude, phase, and
coherence squared respectively. To prevent rapid
crossovers between £t 180 degrees, the absolute value
the phase estimate has been plotted. The

30720 data points) of data was analysed. |

know that the BTM method would have given better

environmental conditions, is partic-




cross-spectral magnitude plot shows the relative ener-
gy content among the first three flexural modes. Only
the fundamental flexural mode contains any significant
amount of energy. The first three flexural modes have

been estimated to be located at 0.32, 1.20, and 3.06
Hz respectively. Only the first two modes are posi-
tively 1identified, however, because of the Tow coher-

ence estimates for the third mode.

The peaks or spikes on the cross-spectral esti~
mate plots labeled TRN are due to tape recorder noise.

Based on the phase and coherence estimates, these
peaks do not represent true energy content of the
respanse spectra. A test to verify this hypothesis

was conducted whereby one channel of the tape recorder
was grounded and an empty data record was recorded.
This data was digitized and processed using the same
cross-spectral analysis procedure. Based on the
results of this test, the noise peaks located at 1.68
and 2.66 Hz are definitely attributable to tape
recorder noise, probably caused by transport flutter.
In addition, other noise peaks at 1.34, 2.01, and 2.20
Hz were also identified.

Transfer function estimates were calculated with
the helicopter deck as a psuedo-input to give relative
acceleration magnitudes ({e. relative accelerometer
location displacements if doubly integrated) between
the helicopter (H), production (P}, wellhead (W), and
boat landing (B) decks for mode shape identification.
Figure 6 1is a representative sample of the transfer
function estimate between the helicopter deck and the
wellhead deck. A summary of the cross-spectral esti-
mates of the first three flexural modes for each of
three combinations of accelerometer locations is given
below.

Phase Coherence Transfer
Accelergmeters (Beg) Squared Function
First Flexure = 0.32 Hz
H and P 0 1.00 0.85
H and W 0 1.00 0.70
H and B a 1.60 0.40
Second Flexure = 1.20 Hz
H and P 0 1.00 Q.57
H and W 12 D.70 0.07
H and 8 180 0.95 0.65
Third Flexure = 3.06 Hz
H and P 15 0.00¢ 0.15
H and W 180 0.05 0.15
H and B 180 0.00 0.10
A two-dimensional mode 1 incorporating
geometrical, mass, and stiffness properties of the
caisson platform as well as soil conditions was used

to perform a finite element analysis using the comput-
er program ADINA. The model, consisting of two degree
of freedom {DOF) beam and truss elements
{(translational and rotational), had enough DOF to get
the first three mode shapes. Additional discussion of
the modeling of the caisson and the soil properties is
presented by Cook {147.

A comparison of the- first three estimated
flexural mode natural frequencies with those calcu-
lated using the finite element (FE) model is shown
below.

PBescription Mode 1, Hz Mode 2, Hz Mode 3, Hz
FE Model 0.33 1.06 3.12
MEM Method 0.32 1.20 3.06

Hong [15] calculated a value of (.30 Hz for the funda-

mental! flexural mode. A comparison of the first two
relative mode shapes is given in Figure 7. Thus, the
natural frequencies and mode shapes estimated using

the MEM multichannel spectral analysis technique com-
pares favorably with other reported values.

CONCLUSIONS

A multichannel MEM method of spectral analysis
has been developed based on the triangular decompos-
ition of the correlation matrix using an algorithm
developed by Rissanen. It is far superior to
cross-spectral estimates obtained using a
Blackman-Tukey code with a Hanning window.

A transfer function estimate using the MEM multi-
channel method of spectral analysis was used in mode
shape 1identification of an offshore caissen platfarm
located in 89 ft of water. These transfer function
estimates, using accelerometers as psuedo-ipputs, give
relative acceleraticn amplitudes (which f doubly
integrated, would be relative displacement amplitudes)
between two accelerometers. Comparison of these rela-
tive acceleration magnitudes with the relative
displacement amplitudes obtained from a finite element
model of the caisson platferm gave reasonable agree-
ment, The third flexural mode values were not
positively identified, however, because of low coher=-
ence values, Thus, this technique can be a useful
tool {in conjunction with the cross-spectral estimates
of magnitude, phase, and coherence) in mode shape
identification of offshore platforms.

NOMENCLATURE

A prediction error filter coefficients

CF = forward filter coefficient

Cxy, Qxy = coincident and quadrature spectral density
estimates

e(n) = error or residual between desired and

actual signals d{n) and y(n)
f,fs,fny = cyclical, sampling, and Nyquist
freguencies

G = multichannel MEM spectral estimate matrix

Gxx,Gyy = autospectral estimate for channel x and y

Guu,Gvv = autospectral estimate for true input
and output u and v

Gmm,Gnn = autospectral estimate for input and
output noise m and n

Gxy = cross-spectral magnitude or gain

H(T) = true fregquency response

h(T) = impulse response function

Ha,He = transfer function estimate using auto and
crass-spectral derivations

Hxy = transfer functicn estimate from cross-

spectral derivation
Hr Hi = real and imagimary components of transfer
functicn estimate




L,m = desired number and current number of Jags

P = number of time series channels

p = prediction error, error power, or forward
power matrix

R, RF = autocorrelation matrix, multichannel
forward correlation matrix

Sx(f) = two-sided MEM autospectral estimate

Sw(f) = white noise variance or prediction error

v = forward power matrix

X, Y = Fourfier transforms of input and output

Y#xy(f} = coherence squared for channels x and y

Fa¥ = sampling interval, seconds

g2(m) = variance or prediction error of order m

Oxy(f) = cross-spectral phase estimate

Gxy(f) = cross-spectral transfer function phase est.

t, 7 = time variable and time delay
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Fig. 1 — Offshore caisson platform
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Introduction

The Random Decrement Technique of vibration signature
analysis was empirically developed in the late 1960's by Henry
Cole [1-4]. Since that time, it has achieved rather widespread
use, especiaily in the aerospace industry, for the analysis of
experimentally generated vibration data [3-7]. The method is
frequently used for the determination of modal damping
ratios and the detection of mechanical failure. The method
also forms the basis of another more general vibration
analysis technique known as “‘Ibrahim Time Domain Modal
Vibration Testing Technique’” [8].

The Randomdec method has achieved rather widespread
use because the instrumentation is rather simple, the data
processing can be done in generally real time, and, most of all,
because it appears to work. The missing element in the
literature and in the day-to-day interpretation of the results of
the technique is a sound mathematical formulation which
shows exactly what a Randomdec signature is. Without such a
theoretical basis, the accuracy of, for example, estimates of
modal damping ratios of a multiple degree of freedom system
cannot be determined.

This paper presents the mathematical basis for the Ran-
domdec technique. The general relationship between the auto-
correlation function of a random process and the Randomdec
signature is derived. A completely general result is obtained.
Inthe particular case of a linear, time invariant system excited
by a zero mean, stationary, Gaussian random process, a
Randomdec signature is shown to reduce to

Contributed by the Vibration and Sound Committee for presentaticn at the
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1981, of THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS. Manuscript
received at ASME Headquarters June 3, 1981. Paper No. 81-DET-13.
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shown to be proportional to the auto-correlation of the output. Exampie Ran-
domdec signatures are computed from acceleration response time histories from an

R y(7)

D.\'ﬂ (n= R (0)

X, (N

where X{r}is the response of the linear system,
X is the trigger level for the acquisition of sample
time histories X(¢)
R (1) is the auto-correlation function of the random
process X(¢),
Ry(Q)=R (r=0).

This result reveals a small but important difference from
the commonly believed interpretatiomr of the Randomdec
signature, It is usually accepted that if a linear system is
excited by a stationary, Gaussian random process, then the
Randomdec signature is the same as the free vibration
response of that linear system to the set of specified initial
conditions. The result of equation (1) shows that for the case
of a specified initial amplitude, the signature is proportional
to the auto-correlation function. The auto-correlation funec-
tion is not, in general, proportional to the free vibration decay
of the linear system. It happens that for the case of a single
degree of freedom oscillator excited by a white noise,
stationary, Gaussian process, the auto-correlation function is
exactly proportional to the free vibration decay from a
specified initial displacement. This special case is often used
to argue on intuitive grounds that the Randomdec signatures
resulting from nonwhite Gaussian stationary excitations also
represent free decay curves. The error in previous analyses
which leads to this conclusion is identified. Fortunately, most
applications of the Randomdec methed have been cir-
cumstances in which the excitation was sufficiently broad-
band that the free vibration decay interpretation did not lead
to substantial errors.

Discussion on this paper will be accepted at ASME Headquarters until November 30, 1981
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The Definition and Intuitive Theory of the Randomdec
Method

A Randomdec signature is simply the trace formed by a
waveform averaging a number of specially selected segments
from an observed time history. Each of the segments shares
the common attribute of known initial conditions. Since one
may specify an initial value and/or an initial slope for the
selected segments, an infinite variety of possibilities exists for
the resultant signature. The most popular choice is to only
specify the initial amplitude for the segments. For a
mechanical system, the physical interpretation of such initial
conditions is a specification of the initial displacement, but
not the velocity of the system at the time cach segment is
selected.

An equivalent definition of the Randomdec signature can
be obtained using the concept of ensemble averages. In order
to do this, one must first assume that the random process is
ergodic. Accordingly, averages computed from a single time
history are equivalent to averages computed across the en-
sembie of ail potential time histories of the process. Under
this assumption, the definition of the Randomdec signaturs is
simply the conditional expected value of the random process.
in conditioning the expected value, members of the ensembie
are excluded from the computation unless they possess the
specified values for the initial conditions. These concepts
form the basis for the analytical treatment of the Randomdec
signature throughout the remainder of the paper.

The intuitive theory of Randomdec is most easily
demonstrated by the example of a single degree of freedom
mechanical oscillator excited by a zero-mean, stationary,
Gaussian random force. The equation of motion of this
system is given by

MX+RX+KX=F0) 2

The response X(1) is also a zero-mean, stationary, Gaussian
Process.

Consider a randomly selected segment of the response X{(£).
Al the beginning of the segment, for which ¢ is arbitrarily set
to zero, the segment has particular initial values for the
amplitude and slope; X{0)=ag and X(0)=b. [f at the time =0
the excitation had been removed, then the response X(9)
would have been simply the transient decay from the initial
conditions g and b.

If on the other hand the excitation had continued, the
resulting response wouid have been the linear superposition of
the iransient decay due to initial conditions plus the con-

volution integral of the impulse response function for the
system and the excitation as shown.

W, b - .
X(1) = ge ~ ot [cosmu- — smug] + — e "sing, ¢
Gy Wy

H

+ \n Rt — D F(ndr N

where wy = VK/Mw, =wov ] =&,

As previously stated, the Randomdec signature is simply
the average of a large number of segments of the response
X,(¢) given that each must start with the same initiai con-
ditions, g and b. Using an ensemble average, the Randomdec
signature is the conditioned expected value of equation {3).

ElX(syta,b] =ae -+ [cos..o, {+ WLE sinw, r]
wh

+ f—e‘f*ﬂ’sian \n h(t — Y E[F{r) la.Bldr (4
. .
where the expression E[ la,p] should be interpreted as the
expected value of the specified random variabie, given that a
and b are the initial conditions on the response X {¢).

The intuitive theory of Randomdec and also the solution
proposed by Caughey [9) in a paper on carthquake response
pubiished in 1961 argue that because the input was specified
as a zero mean, stationary, random process, then the expected
value of the forcing function in the convolution integral of
equation {4) must be zero, thereby proving that the expected
value of X(r), given the initial conditions a and b, is simply the
transient decay of the system from those initial conditions.
This is not true. The requirement of known values of the
output at r=0 has biased the expected value of the excitation
in such a way that it is no longer necessarily zero, just because
it is in general a zero mean input. This is demonstrated befow
for the general case of a linear, time invariaat system excited
by a random progess, F{{).

The cross correlation of the inpur at ¢, with an output at ¢,
is given by

Rertti )= | X\FuPUX Fr)dX,dF: ®

where X, and F, denote the processes of X(r,) and F(¢;) and
P(X,, F,) is the joint probability density function of X, and
F,.
The joint pdf can be written in terms of a conditional pdf
and a first order pdf as follows:

Nomenclature
General Symbols .
Xty = timehistoryof X on (1) = estimated Randomdec
Xo = initial value of X (t =) signature
Single Degree of Freedom Parameters X,X; = random variables p(X,) = probability density
o corresponding to function (pdf) for the
X, X, X = displacement, velocity, possible vatues of X(¥) random variable X
and acceleration at two different times pX\,F.} = joint pdf for X |, F;
M,K,R = mass, spring, and E[] = expected value p(F,1X,) = conditioned pdf for F,
damper constants operator given X
F(t) = force excitation R {7 = awo-correlation fupc- m, . m. = mean values of two
£ = damping ratio tion for X(¢) at ar- different  Gaussian
Wy = undamped narural bitrary lag r random variables
frequency R¢(0) = auto-correlation at af,05 = mean squares of two
w, = damped natural r=0 Gaussian random
frequency py(n) = correlation function variables
a,b = initial displacement Rypl(t,,t3) = cross correifation X,(r) = n" sample time history
and velocity between X(t;) and of X(¢#)
h(t-~7) = impulse response F(t,) N = total number of sample
function on (7 = Randomdec signature time histories
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P(X|-F2)=P(X1)P(Fz |X1) (6)
and equation (5) may be rewritten as

Ryplt 1) = le X, P(X,)L2 F.P(F, 1 X, )dF.dX, n

The integral over F, is the expected value of F(r;} given
A(t,), where, to simplify the example, it was assumed that
dX(t))/dr was not specified. In most cases, the cross-
correlation is not zero, which can only mean that the expected
value of F{t,) given X(¢,) cannot be, in.general, zero.

The intention of this analysis was to establish that the
intuitive arguments behind Randomdec and, for that matter,
the earlier analysis of reference [9], are not generally correct.
The derivation of the Randomdec signature is presented in the
next section.

The General Relationship Between the Auto-
Correlation Function and the Randomdec Signature

The Randomdec signature is computed by averaging an
ensemble of time histories of a random process. The only
common feature of the histories is that in each case the sample
has started with the same initial conditions. To simplify the
analysis, consider the case that only an initial amplitude, but
not slope, is specified. In probabilistic terms, the task is to
find the expected value of a random process X(f), evaluated at
{ =1, given that at a previous tirne ¢,, the random process had
crossed the trigger level, X;,. A mathematical expression of
this definition of the Randomdec expression is

Dxn(flrfz)!E[X(fz)|X(f1)=Xn] (8}

where the expression on the right is the expected value of X{(z,)
given X(f)=X,, and the expression on the left is by
definition the Randomdec signature.

The derivation to follow relates the Randomdec signature
to the auto-correlation function of a random process. Since
the derivation uses only the definitions of the auto-correlation
function and the Randomdec signature, the result is entirely
general.

The auto-correlation function of a random process X(f)
may be defined as follows, as shown in the text Random
Vibration by Crandall and Mark [10]:

RX([!'IZ)z'E[X(I! )XU:)]
T S.x'l sz Xy Xap(X,X:)d X, dX, 9

where the abbreviations X, and X, denote the random
variables X{t,) and X(1,). p(X,,.X,) is the joint probability
density function describing the distribution of X, and X,.
This joint probability density function may be expressed as
the product of a conditional probability density function and
a first order probability density function as shown as follows:

X LX) =p(X, LX)p(X) (10)
Substitution into equation (9) leads to

Ry(t). )= SX; ixz X pX))X,p(X; 1X)dX dX, (1)

These two integrals may be computed sequentially as
follows.

R,v(z.,:z)=L )«’,p()(,)j¥ XoptX, 1X)dX.dX,  (12)
1 2

If X, is defined to be the trigger level X, then the integral
over X, vyields exactly the expected value of X, given

X(t,)= X, which is the definition of the Randomdec signature
as given in equation {12). Therefore,
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Rl t= | XpX DB X=X JaX, (13
t

LNORSESS (14)

X p(X DDy, (1,12)dX,
X

An interpretation of equation (13) is that the auto-
correlation function of the random process X(¢), computed
between any two instants in time r; and ¢,, is a weighted sum
of all possible Randomdec signatures of X(#). The weighting
factor is the product of the trigger level X, and its probability
of occurrence p(X) at time t,.

Results for Stationary Gaussian Random Processes

A specific case for which the mathematics are tractable is a
linear, time-invariant system excited by a zero-mean,
stationary, but not necessarily white, Gaussian random
process. For this case, the system response wiil also be a zero-
mean, stationary, Gaussian random process, The auto-
correlation function contains a complete characterization of
such a process. The following equations relating the
probability distribution to the auto-correlation function can
be found in Crandall and Mark:

1 "()(|"'m'1)2 .
(X)) = = amexp| TR ts
pX)) = Ny exp 707 {13)

1 -1 (X, -m)y

" [
P X = 2wa, 0,V = o3, p[z(l—p'::) of
_ 20X —mHX, —m,) . {X; —:"2)" ]} (16)
o) 0y 0

For stationary random processes, the auto-correlation
function depends only on the time difference between ¢, and
t; and not on f, and ¢, individually. Defining this time dif-

ference as
T=1~1, (17

setting X(r=0)=X,, and noting that for the foregoing
equations

m=m,= (18)
012 = 0'2' =R (0) (19
Ry(7)
= 20
f12(7) R.(0)
these expressions follow:
1 - X3
Xo)= e [ g ] 21
X} 2R 0 PLIR10) @h
XX =
l -1 X3
RL( exp [R [(]0)
(1) Ri(T ¥
21ROV 1 —~ 2{1 . K&
mRx(O0) R%,(0) ( Ri0) )
WR (AKX, X} ]
— _ + (22
R0 R.O) )

The conditional probability density function for X(7) given
X, also follows:

P, X)) = oKX, XY pA) 23}
1 1
P X = J R0\ R
ZRO x 27 o R
N - R ) o s )



I:Xo: _ZRX(T)Xon X,* _ Xyt (_ Ry*(7) ]
R{(0) Ry 2(0) R (D) RO RO
(29
p(X-r IXO)
1 -1 . 2R(D Ry ]
= — X 5= B X,
\;"21ra,2exp 20‘:2[ ’ Ry{0) T RO °
(25}
where
2 _ Ry (1)
=P —RX(O)(I'W)
-1 Ry(7) 2
X, 1X,)= [ . X] 26
oK)= ) T T R o) (40

From the definition of the Randomdec signature

DXO(T)= ‘.x X, p(X, | X)dX, (27)
Therefore
1 -1 [ Ryx(n) ]2
= e Xr_ X dX"
Dy (1) Sx, X e ) 20, Rx©@ °
28)

Bur this integral is simply the expected value of a simple
Gaussian probability distribution. The result may be obtained
by inspection.

R y(7)
oo @)

The Randomdec signature for a zero-mean, stationary,
Gaussian random process is simply the product of the
correlation function and the trigger level.

Ry(7)
- B e—
Dy, (1) =px (10X, 2,0 Xo
For this special case, the Randomdec signature is propor-
tional to the auto-correlation functicon.

If X(0 is the output of a linear time invariant system excited
by a zero-mean, stationary, Gaussian random process, then
X(n is also a zero-mean, stationary Gaussian random process.
For such systems, it is commonly believed that the Ran-
domdec signature represents the transient decay of that
system, to the initial conditions specified by

Dy, (n)=

(30)

X(0) =X,
dX(0) _
—— =0 @1

Since it has been shown that the Randomdec signature maust
be proportional to the auto-correlation function, then it can
only be the transient decay of the system from the specified set
of initial conditions under the restriction that the product of
the correlation coefficient and the trigger level also represent
the transient decay. This is only exactly true when the input to
the system is white noise. However, for sharply tuned
systems, such as a lightly damped single degree of [reedom
oscillator, a band limited spectrum often yields results that are
to sufficient accuracy equivalent to the response to white
noise. This appiies as well to bandpass filtered random
processes. However, the filter's characteristics are then part
of the linear system being evaluated.
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The Variance of the Randomdec Signature

In the previous sections, the theoretical formulation of the
Randomdec signature has been presented. As a practical
matter, such a signature must be estimated from a limited
number of finite length observations of an actual random
process. The practical limitation on record length and number
of records will introduce variance into the estimated
signature. In this section, an estimate of the variance of the
Randomdec signature is obtained for the case that the time
history X(¢) ts a zero mean, Gaussian, and stationary random
process,

For a stationary random process, the theoretical Ran-
domdec signature is a function of the delay r and the trigger
level X(0) = X}, as stated in equation (32).

Dy, (1) =E[X(7) |LX(0) = X, ] (32)

For a finite number of samples X,(r) of the random
process, an estimate of D X, (7) may be obtained by

" 1 &
Dy, (= Y XD 1X, (0 = Xy) (33)

=i
If each time history is sampiled at m+ 1 discrete delay in-
tervals, then the defay r may be repiaced by m, the number of

discrete lags. This yields a discrete formulation for the
estimate of Dy, (.

, 1 =
Dy lm)= 5 10 (X, 0m) X, @) = - X;)

A=l

(34)

The expected value of the estimate may be found as
follows:

ElDy (m = E[f}i X mXo=X)] 69
- E. ELX,m) X, (0) = Xp] 36)

EWD ()= i [Xompdom KoMK @D
- %% ) a8)

The last two equations follow directly from the amalysis
given in the previous section.
Therefore, it is concluded that
R x(m)
Rx(0)
Since this is the discrete equivalent to the continoous
formulation of equation (30), the estimate of the Randomdec
signature is unbiased.

To obtain the variance of the estimate requires first the
estimate of the mean square of the Randomdec signature.

ElDy, (m)] = X 39)

. 1 .
By, e = 5 E[( L X, 1,0

LED

N
=X, X (m) 1 X, (0)= X, (40
(L xmixo-x)]
1 N A
= ¥ & L EUX,m X0

n=l I=)
= Xy WX, (m) 1.X,{0) = X))} (41)
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The expected value inside of the summation may also be
expressed in probabilistic terms as follows:

ELX, (my LX,(0) = X, )X, (m) |1 X,{0)= X,)] =

= {0 X2 X4 X X)X, X, “2)

These results then imply that
1D, Ctm)]= = fvr (0)[1 mR“:(m))
()] = - - -
Vi N2 ¥ R‘E(O)
R (mX,” R\ 1}
N————— +N(N-1)—— X,- 43
i R\'(O) ( ) R\’(O) 1} (43)

The variance of the estimate i1s defined below in terms of the
Randomdec signature.

Var[Dy, ) = E[Dy, *(m)] - ElDy, (m)]* (44)
Substitution of the previous results leads to
Varty, 2l = o (VR0 (1 - %({'3)
+ NN - 1)%%)(02)
_%xﬁu(w‘q—";%—"i)% @5)
- %RX(O)(I—%’(’;_))) 46)
_ LN Ry(0)(1- 9{{,0‘—””) a7)

For a zero mean, Gaussian, and stationary random process,
the variance of the Randomdec signature decreases with N,
the number of averages used in computing the estimate. As
expected, for zero lag (m=0), the variance is zero. This is
because the signature is forced 1o be equal to the trigger level.
For very large lag, the variance increases to 1/N times the
mean square of X(#), assuming R, (1)=0 as r—e, It is im-
portant to note that the variance is independemt of trigger
level. This is true because the variance was calculated
assuming that there was no noise in the measurement. If
substantial noise were present, then the choice of too low a
trigger level would result in false triggers which would grossly
increase the variance of the estimate. The result of equation
(47) is valid for measurements with good signal-to-noise ratios
and trigger levels substantially greater than the noise level.

This estimate of the variance was obtained with the
assumption that individual Randomdec sample time histories
were uncorrelated to one another. In practice, this is not
generally the case. Sample time histories are typically
acquired each time the random process crosses the specified
trigger level. For reasonable trigger levels (such as on the
order of the rms levei of the random process), data acquisition
will be initiated many times within the time frame of the decay
length of R (7). Thus each Randomdec sample may overlap
many others, and the assumption of uncorrelated samples will
not be valid. For a finite number of samples, correlation
between samples will in general increase the variance of the
estimate. Therefore, there is probably not much gained by
triggering a new sample before data acquisition of the most
recent one has been terminated. Users of Randomdec indicate
that hundreds of samples of the highly overlapping type are
required for convergence. It is suggested that convergence
could be obtained with many fewer samples if overlapping
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Fig.1 Single caisson production pitatform

were not atlowed, This would not likely reduce the total data
length required, but would cut down on the number of
necessary computations. Cole [3] conducted Monte Carlo
simulations and reports values of the variance for un-
correlated samples from the output of a single degree of
freedom oscillator excited by band limited white noise. His
values agree with the predictions of equation (46).

An Application to an Offshore Siructure

In March of 1980, authors Vandiver and Cook made ac-
celeration response records on a single cylinder petroleum
production platform depicted in Fig. 1. This structure stands
in 90 ft of water, is 4 ft in dia at the waterline and extends to
76 ft above the water at the helicopter deck. It is very active
dynamically with a lowest natural period of 3.28 s.
Horizontal accelerations were recorded at several locations on
the structure.

Randomdec and other more conventional analysis
procedures have been applied to these data. Some of these
results are presented here. ]

Figure 2 is an auto-correlation function computed from an
acceleration time history of a location near the top of the
structure. The maximum lag is 80 s and the total record length
was 80 min, yielding a ratio of total record length to
maximum lag of 60, a measure of the variance. The
magnitude of this auto-correlation function has been nor-
malized to force it to the same scale as the Randomdec
signatures to be presented later. The recording was low pass
filtered at 15 Hz to remove generator noise. No other filtering
was empioyed. The data were very noise free and were clearly
dominated by the response of the lowest bending natural
mode of the structure. The auto-correlation function looks
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exactly as one would expect from a single degree of freedom
oscillator excited by white noise.

A simple waveform averaging program was written for use
oo a GenRad Time Series Analysis system which was based on
a Digital Equipment Corporation PDP 11/34 minicomputer,

The Randomdec signatures were obtained by the following
sampling procedure. The programmer specified the trigger
level for the sample and selected positive or negative slope.
After each trigger, a sample 80 s long was acquired. The
sample was stored and when the trigger conditions were next
satisfied, a new sample was begun. In this way, two sequential
sampies could be considered to be essentially statisticaily
independent, as can be tested by checking the vaiue of the
auto-correlation function at lags of 80 s and greater.

With this triggering procedure, a maximum of 60 samples
could be obtained from the total record for any specified
trigger level and either + or — slope. Two sampling runs were
made on the data. The trigger ievel was the same for each run,
but the slope was pius for one and minus for the other. In the
first case, 50 samples were obtained; in the second, 43 samples
were the result. The trigger level was set at approximately the
rms level of the record.

Figure 3 shows the result of the ensemble average of 40
samples, 20 each with positive and negative slope. The result
is clearly a long way from convergence to the shape of the
auto-correlation function. Figure 4 shows the result of 86
averages, 43 of positive and 43 of negative slope. The result is
considerably improved over the previous one, which had only
40 averages, although still a crude approximation to the shape
of the auto-correfation function. Without requiring ad-
ditional data, the only way to improve this result would be to
obtain many highly correlated samples, for example, by
triggering a new sample every time the trigger level is crossed
with sither positive or negative slope. This is in fact advocated
in the Randomdec literature. Such techniques would be
difficult to implement in our present software, and were not
attempted.

Comparisons of the computed modal damping ratios using
the auto-correlation data in Fig. 2 and the Randomdec
signature from Fig. 4 are of interest. Logarithmic decrement
catculations over 20 cycles from each figure yield the
following estimates for the modal damping ratio:

£, =0.010 Auto-correlation
£, =0,016 Randomdec
£, =0.014 =0.0027 - MEM

80

+ T L T

se 2.4 @9
TIME (SECOMCE)

Fig.3 Randomdec signatura with 40 averages

T T
8.0 m.9

T T T T T T T
L] .0 “.3 4.9 "
TIME (SECONDS)

Fig.4 Randomdec signature with 86 averages

The MEM estimate refers to a technique described in
reference [11], which uses the maximum entropy method
(MEM) of spectral analysis to obtain an estimate of the
damping ratio. That method also provides an estimate of the
95 percent confidence bounds on the estimated damping as
previously shown, Of the three techniques, the authors place
the most confidence in the MEM results.

Conclusions

The relationship between the auto-correlation of a random
process and the most popular form of the Randomdec
signature has been established. For a Gaussian random
process, the Randomdec signature reduces to the product of
the corretation function and the trigger level. For this case,
the variance of the estimated Randomdec signature is also
found.

Because of the numerical simpiicity of the Randomdec
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method, it provides a potentially useful way of obtaining the
correlation function. In doing so, the shape of the auto-
correlation function is obtained at the sacrifice of the
knowledge of the mean square value of the process. This is
adequate for many purposes.
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